This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
This paper presents Modified Chebyshev-Picard Iteration(MCPI)methods for long-term integration of the coupled orbit and attitude dynamics.Although most orbit predictions for operational satellites have assumed that th...This paper presents Modified Chebyshev-Picard Iteration(MCPI)methods for long-term integration of the coupled orbit and attitude dynamics.Although most orbit predictions for operational satellites have assumed that the attitude dynamics is decoupled from the orbit dynamics,the fully coupled dynamics is required for the solutions of uncontrolled space debris and space objects with high area-to-mass ratio,for which cross sectional area is constantly changing leading to significant change on the solar radiation pressure and atmospheric drag.MCPI is a set of methods for solution of initial value problems and boundary value problems.The methods refine an orthogonal function approximation of long-time-interval segments of state trajectories iteratively by fusing Chebyshev polynomials with the classical Picard iteration and have been applied to multiple challenging aerospace problems.Through the studies on integrating a torque-free rigid body rotation and a long-term integration of the coupled orbit-attitude dynamics through the effect of solar radiation pressure,MCPI methods are shown to achieve several times speedup over the Runge-Kutta 7(8)methods with several orders of magnitudes of better accuracy.MCPI methods are further optimized by integrating the decoupled dynamics at the beginning of the iteration and coupling the full dynamics when the attitude solutions and orbit solutions are converging during the iteration.The approach of decoupling and then coupling during iterations provides a unique and promising perspective on the way to warm start the solution process for the longterm integration of the coupled orbit-attitude dynamics.Furthermore,an attractive feature of MCPI in maintaining the unity constraint for the integration of quaternions within machine accuracy is illustrated to be very appealing.展开更多
This paper studies a delayed air-sea coupled oscillator describing the physical mechanism of El Nino Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained succe...This paper studies a delayed air-sea coupled oscillator describing the physical mechanism of El Nino Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model.展开更多
This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful to...This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful tool used to propagate position and velocity,the present results show that using orbital elements to propagate the state vector reduces the number of MCPI iterations and nodes required,which is especially useful for reducing the computation time when including computationally-intensive calculations such as Spherical Harmonic gravity,and it also converges for>5.5x as many revolutions using a single segment when compared with cartesian propagation.Results for the Classical Orbital Elements and the Modified Equinoctial Orbital Elements(the latter provides singularity-free solutions)show that state propagation using these variables is inherently well-suited to the propagation method chosen.Additional benefits are achieved using a segmentation scheme,while future expansion to the two-point boundary value problem is expected to increase the domain of convergence compared with the cartesian case.MCPI is an iterative numerical method used to solve linear and nonlinear,ordinary differential equations(ODEs).It is a fusion of orthogonal Chebyshev function approximation with Picard iteration that approximates a long-arc trajectory at every iteration.Previous studies have shown that it outperforms the state of the practice numerical integrators of ODEs in a serial computing environment;since MCPI is inherently massively parallelizable,this capability is expected to increase the computational efficiency of the method presented.展开更多
In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thinplates on elastic foundations, the static problem of circular thin plates on Gibson elasticfoundation is solved using an...In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thinplates on elastic foundations, the static problem of circular thin plates on Gibson elasticfoundation is solved using an iterative method based on the modified Vlasov model. On the basisof the principle of minimum potential energy, the governing differential equations and boundaryconditions for circular thin plates on modified Vlasov foundation considering the characteristics ofGibson soil are derived. The equations for the attenuation parameter in bending problem are alsoobtained, and the issue of unknown parameters being difficult to determine is solved using theiterative method. Numerical examples are analyzed and the results are in good agreement withthose form other literatures. It proves that the method is practical and accurate. Theinhomogeneity of modified Vlasov foundations has some influence on the deformation andinternal force behavior of circular thin plates. The effects of various parameters on the bending ofcircular plates and characteristic parameters of the foundation are discussed. The modified modelfurther enriches and develops the elastic foundations. Relevant conclusions that are meaningful toengineering practice are drawn.展开更多
The successive overrelaxation-like (SOR-like) method with the real param- eters ω is considered for solving the augmented system. The new method is called the modified SOR-like (MSOR-like) method. The functional ...The successive overrelaxation-like (SOR-like) method with the real param- eters ω is considered for solving the augmented system. The new method is called the modified SOR-like (MSOR-like) method. The functional equation between the parameters and the eigenvalues of the iteration matrix of the MSOR-like method is given. Therefore, the necessary and sufficient condition for the convergence of the MSOR-like method is derived. The optimal iteration parameter ω of the MSOR-like method is derived. Finally, the proof of theorem and numerical computation based on a particular linear system are given, which clearly show that the MSOR-like method outperforms the SOR-like (Li, C. J., Li, B. J., and Evans, D. J. Optimum accelerated parameter for the GSOR method. Neural, Parallel & Scientific Computations, 7(4), 453-462 (1999)) and the modified sym- metric SOR-like (MSSOR-like) methods (Wu, S. L., Huang, T. Z., and Zhao, X. L. A modified SSOR iterative method for augmented systems. Journal of Computational and Applied Mathematics, 228(4), 424-433 (2009)).展开更多
Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpans...Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.展开更多
In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are inv...In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.展开更多
In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under which the topological degrees of 1-set contractive fields, deg (I-A, Ω, p) are equal to 1. Correspo...In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under which the topological degrees of 1-set contractive fields, deg (I-A, Ω, p) are equal to 1. Correspondingly, we can obtain some new fixed point theorems for 1-set-contractive operators which extend and improve many famous theorems such as the Leray-Schauder theorem, and operator equation, etc. Lemma 2.1 generalizes the famous theorem. The calculation of topological degrees and index are important things, which combine the existence of solution of for integration and differential equation and or approximation by iteration technique. So, we apply the effective modification of He’s variation iteration method to solve some nonlinear and linear equations are proceed to examine some a class of integral-differential equations, to illustrate the effectiveness and convenience of this method.展开更多
The purpose of this paper is to investigate the problem of approximatingfixed points of non- Lipschitizian asymptotically pseudocontractive mappings in an ar-bitrary real Banach space by the modified Ishikawa iterativ...The purpose of this paper is to investigate the problem of approximatingfixed points of non- Lipschitizian asymptotically pseudocontractive mappings in an ar-bitrary real Banach space by the modified Ishikawa iterative sequences with errors.展开更多
Ishikawa iterative sequences with errors different from the iterative sequences introduced by Liu and Xu are given. Moreover, the problem of approximating the fixed points of (ψ)-hemicontractive mapping in normed l...Ishikawa iterative sequences with errors different from the iterative sequences introduced by Liu and Xu are given. Moreover, the problem of approximating the fixed points of (ψ)-hemicontractive mapping in normed linear spaces by the modified Ishikawa iterative sequences with errors is investigated. The results presented in this paper improve and extend the results of the others.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
文摘This paper presents Modified Chebyshev-Picard Iteration(MCPI)methods for long-term integration of the coupled orbit and attitude dynamics.Although most orbit predictions for operational satellites have assumed that the attitude dynamics is decoupled from the orbit dynamics,the fully coupled dynamics is required for the solutions of uncontrolled space debris and space objects with high area-to-mass ratio,for which cross sectional area is constantly changing leading to significant change on the solar radiation pressure and atmospheric drag.MCPI is a set of methods for solution of initial value problems and boundary value problems.The methods refine an orthogonal function approximation of long-time-interval segments of state trajectories iteratively by fusing Chebyshev polynomials with the classical Picard iteration and have been applied to multiple challenging aerospace problems.Through the studies on integrating a torque-free rigid body rotation and a long-term integration of the coupled orbit-attitude dynamics through the effect of solar radiation pressure,MCPI methods are shown to achieve several times speedup over the Runge-Kutta 7(8)methods with several orders of magnitudes of better accuracy.MCPI methods are further optimized by integrating the decoupled dynamics at the beginning of the iteration and coupling the full dynamics when the attitude solutions and orbit solutions are converging during the iteration.The approach of decoupling and then coupling during iterations provides a unique and promising perspective on the way to warm start the solution process for the longterm integration of the coupled orbit-attitude dynamics.Furthermore,an attractive feature of MCPI in maintaining the unity constraint for the integration of quaternions within machine accuracy is illustrated to be very appealing.
基金supported by the National Natural Science Foundation of China (Grant Nos.41105063 and 61070041)
文摘This paper studies a delayed air-sea coupled oscillator describing the physical mechanism of El Nino Southern Oscillation. The approximate expansions of the delayed differential equation's solution are obtained successfully by the modified variational iteration method. The numerical results illustrate the effectiveness and correctness of the method by comparing with the exact solution of the reduced model.
文摘This paper focuses on propagating perturbed two-body motion using orbital elements combined with a novel integration technique.While previous studies show that Modified Chebyshev Picard Iteration(MCPI)is a powerful tool used to propagate position and velocity,the present results show that using orbital elements to propagate the state vector reduces the number of MCPI iterations and nodes required,which is especially useful for reducing the computation time when including computationally-intensive calculations such as Spherical Harmonic gravity,and it also converges for>5.5x as many revolutions using a single segment when compared with cartesian propagation.Results for the Classical Orbital Elements and the Modified Equinoctial Orbital Elements(the latter provides singularity-free solutions)show that state propagation using these variables is inherently well-suited to the propagation method chosen.Additional benefits are achieved using a segmentation scheme,while future expansion to the two-point boundary value problem is expected to increase the domain of convergence compared with the cartesian case.MCPI is an iterative numerical method used to solve linear and nonlinear,ordinary differential equations(ODEs).It is a fusion of orthogonal Chebyshev function approximation with Picard iteration that approximates a long-arc trajectory at every iteration.Previous studies have shown that it outperforms the state of the practice numerical integrators of ODEs in a serial computing environment;since MCPI is inherently massively parallelizable,this capability is expected to increase the computational efficiency of the method presented.
基金financially supported by the National Natural Science Foundation of China (Grant 51278420)the Natural Science Foundation of Shaanxi Province (Grant 2017JM5021)
文摘In this paper, to investigate the influence of soil inhomogeneity on the bending of circular thinplates on elastic foundations, the static problem of circular thin plates on Gibson elasticfoundation is solved using an iterative method based on the modified Vlasov model. On the basisof the principle of minimum potential energy, the governing differential equations and boundaryconditions for circular thin plates on modified Vlasov foundation considering the characteristics ofGibson soil are derived. The equations for the attenuation parameter in bending problem are alsoobtained, and the issue of unknown parameters being difficult to determine is solved using theiterative method. Numerical examples are analyzed and the results are in good agreement withthose form other literatures. It proves that the method is practical and accurate. Theinhomogeneity of modified Vlasov foundations has some influence on the deformation andinternal force behavior of circular thin plates. The effects of various parameters on the bending ofcircular plates and characteristic parameters of the foundation are discussed. The modified modelfurther enriches and develops the elastic foundations. Relevant conclusions that are meaningful toengineering practice are drawn.
基金supported by the National Natural Science Foundation of China(No.10771031)the Fundamental Research Funds for Central Universities(No.090405013)
文摘The successive overrelaxation-like (SOR-like) method with the real param- eters ω is considered for solving the augmented system. The new method is called the modified SOR-like (MSOR-like) method. The functional equation between the parameters and the eigenvalues of the iteration matrix of the MSOR-like method is given. Therefore, the necessary and sufficient condition for the convergence of the MSOR-like method is derived. The optimal iteration parameter ω of the MSOR-like method is derived. Finally, the proof of theorem and numerical computation based on a particular linear system are given, which clearly show that the MSOR-like method outperforms the SOR-like (Li, C. J., Li, B. J., and Evans, D. J. Optimum accelerated parameter for the GSOR method. Neural, Parallel & Scientific Computations, 7(4), 453-462 (1999)) and the modified sym- metric SOR-like (MSSOR-like) methods (Wu, S. L., Huang, T. Z., and Zhao, X. L. A modified SSOR iterative method for augmented systems. Journal of Computational and Applied Mathematics, 228(4), 424-433 (2009)).
基金Supported both by the National Natural Science Foundation(1 980 1 0 2 3 ) and the Teaching and ResearchAward Fund for Outstanding Young Teachers in Higher Education Institutions of MOEP.R.C
文摘Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.
基金Supported by the National Science Foundation of Yunnan Province(2 0 0 2 A0 0 58M)
文摘In this paper,the approximation problems of Ishikawa iteration with errors of fixed points for asymptotically nonexpansive mappings and asymptotically pseudocontractive mappings in arbitrary real Banach spaces are investigated.Some necessary condition and sufficient condition for the convergence of iterative sequences are given respectively.The results thus extend and improve some recent corresponding results.
文摘In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under which the topological degrees of 1-set contractive fields, deg (I-A, Ω, p) are equal to 1. Correspondingly, we can obtain some new fixed point theorems for 1-set-contractive operators which extend and improve many famous theorems such as the Leray-Schauder theorem, and operator equation, etc. Lemma 2.1 generalizes the famous theorem. The calculation of topological degrees and index are important things, which combine the existence of solution of for integration and differential equation and or approximation by iteration technique. So, we apply the effective modification of He’s variation iteration method to solve some nonlinear and linear equations are proceed to examine some a class of integral-differential equations, to illustrate the effectiveness and convenience of this method.
基金Project supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE,P.R.C.and by the National Natural Science Foundation (19801023)of P.R.C.
文摘The purpose of this paper is to investigate the problem of approximatingfixed points of non- Lipschitizian asymptotically pseudocontractive mappings in an ar-bitrary real Banach space by the modified Ishikawa iterative sequences with errors.
文摘Ishikawa iterative sequences with errors different from the iterative sequences introduced by Liu and Xu are given. Moreover, the problem of approximating the fixed points of (ψ)-hemicontractive mapping in normed linear spaces by the modified Ishikawa iterative sequences with errors is investigated. The results presented in this paper improve and extend the results of the others.