For solving nonlinear and transcendental equation f(x)=0 , a singnificant improvement on Newton's method is proposed in this paper. New “Newton Like” methods are founded on the basis of Liapunov's methods...For solving nonlinear and transcendental equation f(x)=0 , a singnificant improvement on Newton's method is proposed in this paper. New “Newton Like” methods are founded on the basis of Liapunov's methods of dynamic system. These new methods preserve quadratic convergence and computational efficiency of Newton's method, and remove the monotoneity condition imposed on f(x):f′(x)≠0 .展开更多
Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite s...Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite shallow shells have been analyzed. The results have been compared with the small deflection linear analytical solution and finite element nonlinear solution. The results proved that the solution coincide with small deflection linear analytical solution in the condition of the low loads and finite element nonlinear solution in the condition of the high loads.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solutio...An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solution of a general tridiagonal system of equations with diagonal dominance. It is not only easy to implement, but also can directly carry out parallel computation. Convergence results are obtained by analysing the linear system. Numerical experiments show that the theory is accurate and the scheme is valid and reliable.展开更多
How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linea...How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).展开更多
Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in te...Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency.Potentially,the optimization problem in the RFM is more difficult to solve than those that arise in traditional methods.Unlike the broader machine-learning research,which frequently targets tasks within the low-precision regime,our study focuses on the high-precision regime crucial for solving PDEs.In this work,we study this problem from the following aspects:(i)we analyze the coeffcient matrix that arises in the RFM by studying the distribution of singular values;(ii)we investigate whether the continuous training causes the overfitting issue;(ii)we test direct and iterative methods as well as randomized methods for solving the optimization problem.Based on these results,we find that direct methods are superior to other methods if memory is not an issue,while iterative methods typically have low accuracy and can be improved by preconditioning to some extent.展开更多
Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant info...Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation.These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.Methods To address this issue,this study introduces a novel Co-SOD method with iterative purification and predictive optimization(IPPO)comprising a common salient purification module(CSPM),predictive optimizing module(POM),and diminishing mixed enhancement block(DMEB).Results These components are designed to explore noise-free joint representations,assist the model in enhancing the quality of the final prediction results,and significantly improve the performance of the Co-SOD algorithm.Furthermore,through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM,POM,and DMEB,our experiments confirmed that these components are pivotal in enhancing the performance of the model,substantiating the significant advancements of our method over existing benchmarks.Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.展开更多
Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyc...Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyclic Reduction algorithm is introduced via a decoupling in Kellogg’s method.展开更多
Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to acces...Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.展开更多
In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order...In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.展开更多
Using the monotone iterative method and Monch Fixed point theorem, the existence of solutions and coupled minimal and maximal quasisolutions of initial value problems for mixed monotone second-order integro-differenti...Using the monotone iterative method and Monch Fixed point theorem, the existence of solutions and coupled minimal and maximal quasisolutions of initial value problems for mixed monotone second-order integro-differential equations in Banach spaces are studied. Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained.展开更多
The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed...The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed. Also the optimal parameter is presented. Numerical results show that the proper choice of the preconditioner can lead to effective by the preconditioned Gauss-Seidel type iterative methods for solving linear systems.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of th...In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].展开更多
An AOR(Accelerated Over-Relaxation)iterative method is suggested by introducing one more parameter than SOR(Successive Over-Relaxation)method for solving coupled Lyapunov matrix equations(CLMEs)that come from continuo...An AOR(Accelerated Over-Relaxation)iterative method is suggested by introducing one more parameter than SOR(Successive Over-Relaxation)method for solving coupled Lyapunov matrix equations(CLMEs)that come from continuous-time Markovian jump linear systems.The proposed algorithm improves the convergence rate,which can be seen from the given illustrative examples.The comprehensive theoretical analysis of convergence and optimal parameter needs further investigation.展开更多
This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods...This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods always lead to optimal convergence rates and have some other important features, especially the methods can be implemented parallelly.展开更多
Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterativ...Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.展开更多
Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial ...Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial guess or the subsequent updated solution.In the second type,the NBE is rearranged into a quadratic form of the absolute vorticity with the positive root of this quadratic form used in the form of a Poisson equation to solve NBE iteratively.The two methods are rederived by expanding the solution asymptotically upon a small Rossby number,and a criterion for optimally truncating the asymptotic expansion is proposed to obtain the super-asymptotic approximation of the solution.For each rederived method,two iterative procedures are designed using the integral-form Poisson solver versus the over-relaxation scheme to solve the boundary value problem in each iteration.Upon testing with analytically formulated wavering jet flows on the synoptic,sub-synoptic and meso-αscales,the iterative procedure designed for the first method with the Poisson solver,named M1a,is found to be the most accurate and efficient.For the synoptic wavering jet flow in which the NBE is entirely elliptic,M1a is extremely accurate.For the sub-synoptic wavering jet flow in which the NBE is mostly elliptic,M1a is sufficiently accurate.For the meso-αwavering jet flow in which the NBE is partially hyperbolic so its boundary value problem becomes seriously ill-posed,M1a can effectively reduce the solution error for the cyclonically curved part of the wavering jet flow,but not for the anti-cyclonically curved part.展开更多
Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at...Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at the base stations. However, the excessively high computational complexity of the signal detection in massive MIMO systems imposes a significant challenge for practical hardware implementations. In this paper, we propose a novel minimum mean square error(MMSE) signal detection using the accelerated overrelaxation(AOR) iterative method without complicated matrix inversion, which is capable of reducing the overall complexity of the classical MMSE algorithm by an order of magnitude. Simulation results show that the proposed AOR-based method can approach the conventional MMSE signal detection with significant complexity reduction.展开更多
There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informational efficiency,and efficiency index.In this work,we use another way,...There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informational efficiency,and efficiency index.In this work,we use another way,namely the basins of attraction of the method.The purpose of this study is to compare several iterative schemes for nonlinear equations.All the selected schemes are of the third-order of convergence and most of them have the same efficiency index.The comparison depends on the basins of attraction of the iterative techniques when applied on several polynomials of different degrees.As a comparison,we determine the CPU time(in seconds)needed by each scheme to obtain the basins of attraction,besides,we illustrate the area of convergence of these schemes by finding the number of convergent and divergent points in a selected range for all methods.Comparisons confirm the fact that basins of attraction differ for iterative methods of different orders,furthermore,they vary for iterative methods of the same order even if they have the same efficiency index.Consequently,this leads to the need for a new index that reflects the real efficiency of the iterative scheme instead of the commonly used efficiency index.展开更多
文摘For solving nonlinear and transcendental equation f(x)=0 , a singnificant improvement on Newton's method is proposed in this paper. New “Newton Like” methods are founded on the basis of Liapunov's methods of dynamic system. These new methods preserve quadratic convergence and computational efficiency of Newton's method, and remove the monotoneity condition imposed on f(x):f′(x)≠0 .
文摘Based on the results by Wang,in this paper, the iterative method is presented for the study of large deflection nonlinear problem of laminated composite shallow shells and plates. The rectangular laminated composite shallow shells have been analyzed. The results have been compared with the small deflection linear analytical solution and finite element nonlinear solution. The results proved that the solution coincide with small deflection linear analytical solution in the condition of the low loads and finite element nonlinear solution in the condition of the high loads.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solution of a general tridiagonal system of equations with diagonal dominance. It is not only easy to implement, but also can directly carry out parallel computation. Convergence results are obtained by analysing the linear system. Numerical experiments show that the theory is accurate and the scheme is valid and reliable.
基金support provided by the Ministry of Science and Technology,Taiwan,ROC under Contract No.MOST 110-2221-E-019-044.
文摘How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).
基金supported by the NSFC Major Research Plan--Interpretable and Generalpurpose Next-generation Artificial Intelligence(No.92370205).
文摘Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency.Potentially,the optimization problem in the RFM is more difficult to solve than those that arise in traditional methods.Unlike the broader machine-learning research,which frequently targets tasks within the low-precision regime,our study focuses on the high-precision regime crucial for solving PDEs.In this work,we study this problem from the following aspects:(i)we analyze the coeffcient matrix that arises in the RFM by studying the distribution of singular values;(ii)we investigate whether the continuous training causes the overfitting issue;(ii)we test direct and iterative methods as well as randomized methods for solving the optimization problem.Based on these results,we find that direct methods are superior to other methods if memory is not an issue,while iterative methods typically have low accuracy and can be improved by preconditioning to some extent.
基金Supported by the National Natural Science Foundation of China under Grant(62301330,62101346)the Guangdong Basic and Applied Basic Research Foundation(2024A1515010496,2022A1515110101)+1 种基金the Stable Support Plan for Shenzhen Higher Education Institutions(20231121103807001)the Guangdong Provincial Key Laboratory under(2023B1212060076).
文摘Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation.These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.Methods To address this issue,this study introduces a novel Co-SOD method with iterative purification and predictive optimization(IPPO)comprising a common salient purification module(CSPM),predictive optimizing module(POM),and diminishing mixed enhancement block(DMEB).Results These components are designed to explore noise-free joint representations,assist the model in enhancing the quality of the final prediction results,and significantly improve the performance of the Co-SOD algorithm.Furthermore,through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM,POM,and DMEB,our experiments confirmed that these components are pivotal in enhancing the performance of the model,substantiating the significant advancements of our method over existing benchmarks.Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.
文摘Kellogg gave a version of the Peaceman-Radford method. In this paper, we introduce a SSOR iteration method which uses Kellogg’s method. The new algorithm has some advantages over the traditional SSOR algorithm. A Cyclic Reduction algorithm is introduced via a decoupling in Kellogg’s method.
文摘Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.
文摘In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.
文摘Using the monotone iterative method and Monch Fixed point theorem, the existence of solutions and coupled minimal and maximal quasisolutions of initial value problems for mixed monotone second-order integro-differential equations in Banach spaces are studied. Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained.
基金Project supported by MOE's 2004 New Century Excellent Talent Program (NCET)the Applied Basic Research Foundations of Sichuan Province (No.05JY029-068-2)
文摘The preconditioned Gauss-Seidel type iterative method for solving linear systems, with the proper choice of the preconditioner, is presented. Convergence of the preconditioned method applied to Z-matrices is discussed. Also the optimal parameter is presented. Numerical results show that the proper choice of the preconditioner can lead to effective by the preconditioned Gauss-Seidel type iterative methods for solving linear systems.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
基金the Thailand Research Fund for financial support under Grant BRG5280016
文摘In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].
基金Supported by Key Scientific Research Project of Colleges and Universities in Henan Province of China(Grant No.20B110012)。
文摘An AOR(Accelerated Over-Relaxation)iterative method is suggested by introducing one more parameter than SOR(Successive Over-Relaxation)method for solving coupled Lyapunov matrix equations(CLMEs)that come from continuous-time Markovian jump linear systems.The proposed algorithm improves the convergence rate,which can be seen from the given illustrative examples.The comprehensive theoretical analysis of convergence and optimal parameter needs further investigation.
基金This work was supported by the National Natural Science Foundation of China
文摘This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods always lead to optimal convergence rates and have some other important features, especially the methods can be implemented parallelly.
基金Supported by the National Natural Science Foundation of China(61272300)
文摘Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.
基金the NSF of China Grants 91937301 and 41675060,the National Key Scientific and Technological Infrastructure Project"EarthLab",and the ONR Grants N000141712375 and N000142012449 to the University of Oklahoma(OU)The numerical experiments were performed at the OU supercomputer SchoonerCIMMS by NOAA/Office of Oceanic and Atmospheric Research under NOAA-OU Cooperative Agreement#NA110AR4320072,U.S.Department of Commerce.
文摘Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial guess or the subsequent updated solution.In the second type,the NBE is rearranged into a quadratic form of the absolute vorticity with the positive root of this quadratic form used in the form of a Poisson equation to solve NBE iteratively.The two methods are rederived by expanding the solution asymptotically upon a small Rossby number,and a criterion for optimally truncating the asymptotic expansion is proposed to obtain the super-asymptotic approximation of the solution.For each rederived method,two iterative procedures are designed using the integral-form Poisson solver versus the over-relaxation scheme to solve the boundary value problem in each iteration.Upon testing with analytically formulated wavering jet flows on the synoptic,sub-synoptic and meso-αscales,the iterative procedure designed for the first method with the Poisson solver,named M1a,is found to be the most accurate and efficient.For the synoptic wavering jet flow in which the NBE is entirely elliptic,M1a is extremely accurate.For the sub-synoptic wavering jet flow in which the NBE is mostly elliptic,M1a is sufficiently accurate.For the meso-αwavering jet flow in which the NBE is partially hyperbolic so its boundary value problem becomes seriously ill-posed,M1a can effectively reduce the solution error for the cyclonically curved part of the wavering jet flow,but not for the anti-cyclonically curved part.
基金supported by the key project of the National Natural Science Foundation of China (No. 61431001)Huawei Innovation Research Program, the 5G research program of China Mobile Research Institute (Grant No. [2015] 0615)+2 种基金the open research fund of National Mobile Communications Research Laboratory Southeast University (No.2017D02)Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services, and Keysight
文摘Massive multiple-input multiple-output(MIMO) system is capable of substantially improving the spectral efficiency as well as the capacity of wireless networks relying on equipping a large number of antenna elements at the base stations. However, the excessively high computational complexity of the signal detection in massive MIMO systems imposes a significant challenge for practical hardware implementations. In this paper, we propose a novel minimum mean square error(MMSE) signal detection using the accelerated overrelaxation(AOR) iterative method without complicated matrix inversion, which is capable of reducing the overall complexity of the classical MMSE algorithm by an order of magnitude. Simulation results show that the proposed AOR-based method can approach the conventional MMSE signal detection with significant complexity reduction.
基金We are grateful for the financial support from UKM’s research Grant GUP-2019-033。
文摘There are several ways that can be used to classify or compare iterative methods for nonlinear equations,for instance;order of convergence,informational efficiency,and efficiency index.In this work,we use another way,namely the basins of attraction of the method.The purpose of this study is to compare several iterative schemes for nonlinear equations.All the selected schemes are of the third-order of convergence and most of them have the same efficiency index.The comparison depends on the basins of attraction of the iterative techniques when applied on several polynomials of different degrees.As a comparison,we determine the CPU time(in seconds)needed by each scheme to obtain the basins of attraction,besides,we illustrate the area of convergence of these schemes by finding the number of convergent and divergent points in a selected range for all methods.Comparisons confirm the fact that basins of attraction differ for iterative methods of different orders,furthermore,they vary for iterative methods of the same order even if they have the same efficiency index.Consequently,this leads to the need for a new index that reflects the real efficiency of the iterative scheme instead of the commonly used efficiency index.