Through the coherent accumulation of target echoes, inverse synthetic aperture radar (ISAR) imaging achieves high azimuth resolution. However, because of the instability of the radar system, the echoes of the 1SAR w...Through the coherent accumulation of target echoes, inverse synthetic aperture radar (ISAR) imaging achieves high azimuth resolution. However, because of the instability of the radar system, the echoes of the 1SAR will be randomly lost. The conventional FFT processing methods can cause image blur and high sidelobes or other issues. A novel algorithm for ISAR missing-data imaging based on the Iterative Adaptive Approach (IAA) is proposed. The algorithm enjoys global convergence properties and does not need to set the parameters in advance. The missing-data ISAR imaging results for simulated and measured data illustrate the effectiveness of the algorithm.展开更多
Extreme wave is highly nonlinear and may occur due to diverse reasons unexpectedly.The simulated results of extreme wave based on wave focusing,which were generated using high order spectrum method,are presented.The i...Extreme wave is highly nonlinear and may occur due to diverse reasons unexpectedly.The simulated results of extreme wave based on wave focusing,which were generated using high order spectrum method,are presented.The influences of the steepness,frequency bandwidth as well as frequency spectrum on focusing position shift were examined,showing that they can affect the wave focusing significantly.Hence,controlled accurate generation of extreme wave at a predefined position in wave flume is a difficult but important task.In this paper,an iterative adaptive approach is applied using linear dispersion theory to optimize the control signal of the wavemaker.The performance of the proposed approach is numerically investigated for a wide variety of scenarios.The results demonstrate that this approach can reproduce accurate wave focusing effectively.展开更多
Based on the characteristics of impulse noises, the authors establish a new filter, Iterative Adaptive Median Filter (IAMF). Acccording to the characteristics of images polluted by impulse noises, they establish wei...Based on the characteristics of impulse noises, the authors establish a new filter, Iterative Adaptive Median Filter (IAMF). Acccording to the characteristics of images polluted by impulse noises, they establish weight function combined with iterative algorithm to eliminate noises. In IAMF filter process, because the noise sixes do not participate in the computation, they do not influence the normal points in the image, therefore IAMF can retain the detail well, maintain the good clarity after processing image, and simultaneously reduce the computation. Experiments showed that IAMF have ideal denoising effect for the images polluted by the impulse noises; especially when the noise rates are more than 0.5, IAMF is mote prominent, even when the noise rotes are more than 0.9, IAMF can achieve a satisfactory results.展开更多
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (...An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.展开更多
Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography ang...Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.展开更多
To provide stable and accurate position information of control points in a complex coastal environment,an adaptive iterated extended Kalman filter(AIEKF)for fixed-point positioning integrating global navigation satell...To provide stable and accurate position information of control points in a complex coastal environment,an adaptive iterated extended Kalman filter(AIEKF)for fixed-point positioning integrating global navigation satellite system,inertial navigation system,and ultra wide band(UWB)is proposed.In thismethod,the switched global navigation satellite system(GNSS)and UWB measurement are used as the measurement of the proposed filter.For the data fusion filter,the expectation-maximization(EM)based IEKF is used as the forward filter,then,the Rauch-Tung-Striebel smoother for IEKF filter’s result smoothing.Tests illustrate that the proposed AIEKF is able to provide an accurate estimation.展开更多
To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morpho...To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.展开更多
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and a...This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.展开更多
For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fas...For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction.展开更多
In this paper,the problem of adaptive iterative learning based consensus control for periodically time-varying multi-agent systems is studied,in which the dynamics of each follower are driven by nonlinearly parameteri...In this paper,the problem of adaptive iterative learning based consensus control for periodically time-varying multi-agent systems is studied,in which the dynamics of each follower are driven by nonlinearly parameterized terms with periodic disturbances.Neural networks and Fourier base expansions are introduced to describe the periodically time-varying dynamic terms.On this basis,an adaptive learning parameter with a positively convergent series term is constructed,and a distributed control protocol based on local signals between agents is designed to ensure accurate consensus of the closed-loop systems.Furthermore,consensus algorithm is generalized to solve the formation control problem.Finally,simulation experiments are implemented through MATLAB to demonstrate the effectiveness of the method used.展开更多
As the dynamic stiffness of radial magnetic bearings is not big enough, when the rotor spins at high speed, unbalance displacement vibration phenomenon will be produced. The most effective way for reducing the displac...As the dynamic stiffness of radial magnetic bearings is not big enough, when the rotor spins at high speed, unbalance displacement vibration phenomenon will be produced. The most effective way for reducing the displacement vibration is to enhance the radial magnetic bearing stiffness through increasing the control currents, but the suitable control currents are not easy to be provided, especially, to be provided in real time. To implement real time unbalance displacement vibration compensation, through analyzing active magnetic bearings (AMB) mathematical model, the existence of radial displacement runout is demonstrated. To restrain the runout, a new control scheme-adaptive iterative learning control (A1LC) is proposed in view of rotor frequency periodic uncertainties during the startup process. The previous error signal is added into AILC learning law to enhance the convergence speed, and an impacting factor/3 influenced by the rotor rotating frequency is introduced as learning output coefficient to improve the rotor control effects, As a feed-forward compensation controller, AILC can provide one tmknown and perfect compensatory signal to make the rotor rotate around its geometric axis through power amplifier and radial magnetic bearings. To improve AMB closed-loop control system robust stability, one kind of incomplete differential PID feedback controller is adopted. The correctness of the AILC algorithm is validated by the simulation of AMB mathematical model adding AILC compensation algorithm through MATLAB soft. And the compensation for fixed rotational frequency is implemented in the actual AMB system. The simulation and experiment results show that the compensation scheme based on AILC algorithm as feed-forward compensation and PID algorithm as close-loop control can realize AMB system displacement minimum compensation at one fixed frequency, and improve the stability of the control system. The proposed research provides a new adaptive iterative/earning control algorithm and control strategy for AMB displacement minimum compensation, and provides some references for time-varied displacement minimum compensation.展开更多
Background Currently there is a trend towards reducing radiation dose while maintaining image quality during computer tomography (CT) examination.This results from the concerns about radiation exposure from CT and t...Background Currently there is a trend towards reducing radiation dose while maintaining image quality during computer tomography (CT) examination.This results from the concerns about radiation exposure from CT and the potential increase in the incidence of radiation induced carcinogenesis.This study aimed to investigate the lowest radiation dose for maintaining good image quality in adult chest scanning using GE CT equipment.Methods Seventy-two adult patients were examined by Gemstone Spectral CT.They were randomly divided into six groups.We set up a different value of noise index (NI) when evaluating each group every other number from 13.0 to 23.0.The original images were acquired with a slice of 5 mm thickness.For each group,several image series were reconstructed using different levels of adaptive statistical iterative reconstruction (ASIR) (30%,50%,and 70%).We got a total of 18 image sequences of different combinations of NI and ASIR percentage.On one hand,quantitative indicators,such as CT value and standard deviation (SD),were assessed at the region of interest.The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated.The volume CT dose index (CTDI) and dose length product (DLP) were recorded.On the other hand,two radiologists with >5 years of experience blindly reviewed the subjective image quality using the standards we had previously set.Results The different combinations of noise index and ASIR were assessed.There was no significant difference in CT values among the 18 image sequences.The SD value was reduced with the noise index's reduction or ASIR's increase.There was a trend towards gradually lower SNR and CNR with an NI increase.The CTDI and DLP were diminishing as the NI increased.The scores from subjective image quality evaluation were reduced in all groups as the ASIR increased.Conclusions Increasing NI can reduce radiation dose.With the premise of maintaining the same image quality,using a suitable percentage of ASIR can increase the value of NI.To assure image quality,we concluded that when the NI was set at 17.0 and ASlR was 50%,the image quality could be optimal for not only satisfying the requirements of clinical diagnosis,but also achieving the purpose of low-dose scanning.展开更多
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separati...This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.展开更多
In many applications, the system dynamics allows the decomposition into lower dimensional subsystems with interconnections among them. This decomposition is motivated by the ease and flexibility of the controller desi...In many applications, the system dynamics allows the decomposition into lower dimensional subsystems with interconnections among them. This decomposition is motivated by the ease and flexibility of the controller design for each subsystem. In this paper, a decentralized model reference adaptive iterative learning control scheme is developed for interconnected systems with model uncertainties. The interconnections in the dynamic equations of each subsystem are considered with unknown boundaries. The proposed controller of each subsystem depends only on local state variables without any information exchange with other subsystems. The adaptive parameters are updated along iteration axis to com- pensate the interconnections among subsystems. It is shown that by using the proposed decentralized controller, the states of the subsystems can track the desired reference model states iteratively. Simulation results demonstrate that, utilizing the proposed adaptive controller, the tracking error for each subsystem converges along the iteration axis.展开更多
In this study,We propose a compensated distributed adaptive learning algorithm for heterogeneous multi-agent systems with repetitive motion,where the leader's dynamics are unknown,and the controlled system's p...In this study,We propose a compensated distributed adaptive learning algorithm for heterogeneous multi-agent systems with repetitive motion,where the leader's dynamics are unknown,and the controlled system's parameters are uncertain.The multiagent systems are considered a kind of hybrid order nonlinear systems,which relaxes the strict requirement that all agents are of the same order in some existing work.For theoretical analyses,we design a composite energy function with virtual gain parameters to reduce the restriction that the controller gain depends on global information.Considering the stability of the controller,we introduce a smooth continuous function to improve the piecewise controller to avoid possible chattering.Theoretical analyses prove the convergence of the presented algorithm,and simulation experiments verify the effectiveness of the algorithm.展开更多
In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-doma...In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-domain representation is constructed to derive an error model with relative degree one for our purpose. And time-varying radial basis function neural network is employed to deal with system uncertainty. A new signal is constructed by using a first-order filter, which removes the requirement of strict positive real(SPR) condition and identical initial condition of iterative learning control. Based on property of hyperbolic tangent function,the system tracing error is proved to converge to the origin as the iteration tends to infinity by constructing Lyapunov-like composite energy function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.展开更多
Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial con...Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a specified tracking accuracy beyond the initial state variance.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.61471149 and 61622107)
文摘Through the coherent accumulation of target echoes, inverse synthetic aperture radar (ISAR) imaging achieves high azimuth resolution. However, because of the instability of the radar system, the echoes of the 1SAR will be randomly lost. The conventional FFT processing methods can cause image blur and high sidelobes or other issues. A novel algorithm for ISAR missing-data imaging based on the Iterative Adaptive Approach (IAA) is proposed. The algorithm enjoys global convergence properties and does not need to set the parameters in advance. The missing-data ISAR imaging results for simulated and measured data illustrate the effectiveness of the algorithm.
基金supported by the Basic Research Program of Dalian Maritime University(Grant No.3132019112)the Open Fund Program of State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP1910).
文摘Extreme wave is highly nonlinear and may occur due to diverse reasons unexpectedly.The simulated results of extreme wave based on wave focusing,which were generated using high order spectrum method,are presented.The influences of the steepness,frequency bandwidth as well as frequency spectrum on focusing position shift were examined,showing that they can affect the wave focusing significantly.Hence,controlled accurate generation of extreme wave at a predefined position in wave flume is a difficult but important task.In this paper,an iterative adaptive approach is applied using linear dispersion theory to optimize the control signal of the wavemaker.The performance of the proposed approach is numerically investigated for a wide variety of scenarios.The results demonstrate that this approach can reproduce accurate wave focusing effectively.
基金supported by Shandong Prvince Natural Science Foundation(Y2008G31)
文摘Based on the characteristics of impulse noises, the authors establish a new filter, Iterative Adaptive Median Filter (IAMF). Acccording to the characteristics of images polluted by impulse noises, they establish weight function combined with iterative algorithm to eliminate noises. In IAMF filter process, because the noise sixes do not participate in the computation, they do not influence the normal points in the image, therefore IAMF can retain the detail well, maintain the good clarity after processing image, and simultaneously reduce the computation. Experiments showed that IAMF have ideal denoising effect for the images polluted by the impulse noises; especially when the noise rates are more than 0.5, IAMF is mote prominent, even when the noise rotes are more than 0.9, IAMF can achieve a satisfactory results.
基金supported by National Natural Science Foundation of China(No.60804021,No.60702063)
文摘An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
文摘Objective To evaluate the feasibility of using a low concentration of contrast medium (Visipaque 270 mgl/mL), low tube voltage, and an advanced image reconstruction algorithm in head and neck computed tomography angiography (CTA). Methods Forty patients (22 men and 18 women; average age 48.7 ± 14.25 years; average body mass index 23.9 ± 3.7 kg/m^2) undergoing CTA for suspected vascular diseases were randomly assigned into two groups. Group A (n = 20) was administered 370 mgl/mL contrast medium, and group B (n = 20) was administered 270 mgl/mL contrast medium. Both groups were administered at a rate of 4.8 mL/s and an injection volume of 0.8 mL/kg. Images of group A were obtained with 120 kVp and filtered back projection (FBP) reconstruction, whereas images of group B were obtained with 80 kVp and 80% adaptive iterative statistical reconstruction algorithm (ASiR). The CT values and standard deviations of intracranial arteries and image noise on the corona radiata were measured to calculate the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The beam-hardening artifacts (BHAs) around the skull base were calculated. Two readers evaluated the image quality with volume rendered images using scores from 1 to 5. The values between the two groups were statistically compared. Results The mean CT value of the intracranial arteries in group B was significantly higher than that in group A (P 〈 0.001). The CNR and SNR values in group B were also statistically higher than those in group A (P 〈 0.001). Image noise and BHAs were not significantly different between the two groups. The image quality score of VR images of in group B was significantly higher than that in group A (P = 0.001). However, the quality scores of axial enhancement images in group B became significantly smaller than those in group A (P〈 0.001). The CT dose index volume and dose-length product were decreased by 63.8% and 64%, respectively, in group B (P 〈 0.001 for both). Conclusion Visipaque combined with 80 kVp and 80% ASiR provided similar image quality in intracranial CTA with 64% radiation dose reduction compared with the use of lopamidol, 120 kVp, and FBP reconstruc-tion.
基金supported in part by the Shandong Natural Science Foundation under Grant ZR2020MF067.
文摘To provide stable and accurate position information of control points in a complex coastal environment,an adaptive iterated extended Kalman filter(AIEKF)for fixed-point positioning integrating global navigation satellite system,inertial navigation system,and ultra wide band(UWB)is proposed.In thismethod,the switched global navigation satellite system(GNSS)and UWB measurement are used as the measurement of the proposed filter.For the data fusion filter,the expectation-maximization(EM)based IEKF is used as the forward filter,then,the Rauch-Tung-Striebel smoother for IEKF filter’s result smoothing.Tests illustrate that the proposed AIEKF is able to provide an accurate estimation.
基金supported by Natural Science Foundation of Jilin Province(YDZJ202401352ZYTS).
文摘To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.
基金supported by the National Natural Science Foundation of China(61873013,61922007)。
文摘This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.
基金Supported by the National Natural Science Foundation of China(51174091,61364013,61164013)Earlier Research Project of the State Key Development Program for Basic Research of China(2014CB360502)
文摘For measurement of component content in the extraction and separation process of praseodymium/neodymium(Pr/Nd), a soft measurement method was proposed based on modeling of ion color features, which is suitable for fast estimation of component content in production field. Feature analysis on images of the solution is conducted,which are captured from Pr/Nd extraction/separation field. H/S components in the HSI color space are selected as model inputs, so as to establish the least squares support vector machine(LSSVM) model for Nd(Pr) content,while the model parameters are determined with the GA algorithm. To improve the adaptability of the model,the adaptive iteration algorithm is used to correct parameters of the LSSVM model, on the basis of model correction strategy and new sample data. Using the field data collected from rare earth extraction production, predictive methods for component content and comparisons are given. The results indicate that the proposed method presents good adaptability and high prediction precision, so it is applicable to the fast detection of element content in the rare earth extraction.
基金supported by the National Natural Science Foundation of China(Grant Nos.62203342,62073254,92271101,62106186,and62103136)the Fundamental Research Funds for the Central Universities(Grant Nos.XJS220704,QTZX23003,and ZYTS23046)+1 种基金the Project funded by China Postdoctoral Science Foundation(Grant No.2022M712489)the Natural Science Basic Research Program of Shaanxi(Grant Nos.2023-JC-YB-585 and 2020JM-188)。
文摘In this paper,the problem of adaptive iterative learning based consensus control for periodically time-varying multi-agent systems is studied,in which the dynamics of each follower are driven by nonlinearly parameterized terms with periodic disturbances.Neural networks and Fourier base expansions are introduced to describe the periodically time-varying dynamic terms.On this basis,an adaptive learning parameter with a positively convergent series term is constructed,and a distributed control protocol based on local signals between agents is designed to ensure accurate consensus of the closed-loop systems.Furthermore,consensus algorithm is generalized to solve the formation control problem.Finally,simulation experiments are implemented through MATLAB to demonstrate the effectiveness of the method used.
基金supported by National Natural Science Foundation of China (Grant No. 50437010)National Hi-tech Research and Development Program of China (863 Program,Grant No. 2006AA05Z205)Fund of Aeronautics Science of China (Grant No. 2008ZB52018)
文摘As the dynamic stiffness of radial magnetic bearings is not big enough, when the rotor spins at high speed, unbalance displacement vibration phenomenon will be produced. The most effective way for reducing the displacement vibration is to enhance the radial magnetic bearing stiffness through increasing the control currents, but the suitable control currents are not easy to be provided, especially, to be provided in real time. To implement real time unbalance displacement vibration compensation, through analyzing active magnetic bearings (AMB) mathematical model, the existence of radial displacement runout is demonstrated. To restrain the runout, a new control scheme-adaptive iterative learning control (A1LC) is proposed in view of rotor frequency periodic uncertainties during the startup process. The previous error signal is added into AILC learning law to enhance the convergence speed, and an impacting factor/3 influenced by the rotor rotating frequency is introduced as learning output coefficient to improve the rotor control effects, As a feed-forward compensation controller, AILC can provide one tmknown and perfect compensatory signal to make the rotor rotate around its geometric axis through power amplifier and radial magnetic bearings. To improve AMB closed-loop control system robust stability, one kind of incomplete differential PID feedback controller is adopted. The correctness of the AILC algorithm is validated by the simulation of AMB mathematical model adding AILC compensation algorithm through MATLAB soft. And the compensation for fixed rotational frequency is implemented in the actual AMB system. The simulation and experiment results show that the compensation scheme based on AILC algorithm as feed-forward compensation and PID algorithm as close-loop control can realize AMB system displacement minimum compensation at one fixed frequency, and improve the stability of the control system. The proposed research provides a new adaptive iterative/earning control algorithm and control strategy for AMB displacement minimum compensation, and provides some references for time-varied displacement minimum compensation.
文摘Background Currently there is a trend towards reducing radiation dose while maintaining image quality during computer tomography (CT) examination.This results from the concerns about radiation exposure from CT and the potential increase in the incidence of radiation induced carcinogenesis.This study aimed to investigate the lowest radiation dose for maintaining good image quality in adult chest scanning using GE CT equipment.Methods Seventy-two adult patients were examined by Gemstone Spectral CT.They were randomly divided into six groups.We set up a different value of noise index (NI) when evaluating each group every other number from 13.0 to 23.0.The original images were acquired with a slice of 5 mm thickness.For each group,several image series were reconstructed using different levels of adaptive statistical iterative reconstruction (ASIR) (30%,50%,and 70%).We got a total of 18 image sequences of different combinations of NI and ASIR percentage.On one hand,quantitative indicators,such as CT value and standard deviation (SD),were assessed at the region of interest.The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated.The volume CT dose index (CTDI) and dose length product (DLP) were recorded.On the other hand,two radiologists with >5 years of experience blindly reviewed the subjective image quality using the standards we had previously set.Results The different combinations of noise index and ASIR were assessed.There was no significant difference in CT values among the 18 image sequences.The SD value was reduced with the noise index's reduction or ASIR's increase.There was a trend towards gradually lower SNR and CNR with an NI increase.The CTDI and DLP were diminishing as the NI increased.The scores from subjective image quality evaluation were reduced in all groups as the ASIR increased.Conclusions Increasing NI can reduce radiation dose.With the premise of maintaining the same image quality,using a suitable percentage of ASIR can increase the value of NI.To assure image quality,we concluded that when the NI was set at 17.0 and ASlR was 50%,the image quality could be optimal for not only satisfying the requirements of clinical diagnosis,but also achieving the purpose of low-dose scanning.
基金supported by National Natural Science Foundation of China (No. 60974139)Fundamental Research Funds for the Central Universities (No. 72103676)
文摘This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.
基金supported by the National Grand Fundamental Research 973 Program of China(No.G2002CB312200)
文摘In many applications, the system dynamics allows the decomposition into lower dimensional subsystems with interconnections among them. This decomposition is motivated by the ease and flexibility of the controller design for each subsystem. In this paper, a decentralized model reference adaptive iterative learning control scheme is developed for interconnected systems with model uncertainties. The interconnections in the dynamic equations of each subsystem are considered with unknown boundaries. The proposed controller of each subsystem depends only on local state variables without any information exchange with other subsystems. The adaptive parameters are updated along iteration axis to com- pensate the interconnections among subsystems. It is shown that by using the proposed decentralized controller, the states of the subsystems can track the desired reference model states iteratively. Simulation results demonstrate that, utilizing the proposed adaptive controller, the tracking error for each subsystem converges along the iteration axis.
基金the National Natural Science Foundation of China(Grant Nos.62203342,62073254,92271101,62106186,and 62103136)the Fundamental Research Funds for the Central Universities(Grant Nos.XJS220704,QTZX23003,and ZYTS23046)+1 种基金the Project Funded by China Postdoctoral Science Foundation(Grant No.2022M712489)the Natural Science Basic Research Program of Shaanxi(Grant No.2023-JC-YB-585)。
文摘In this study,We propose a compensated distributed adaptive learning algorithm for heterogeneous multi-agent systems with repetitive motion,where the leader's dynamics are unknown,and the controlled system's parameters are uncertain.The multiagent systems are considered a kind of hybrid order nonlinear systems,which relaxes the strict requirement that all agents are of the same order in some existing work.For theoretical analyses,we design a composite energy function with virtual gain parameters to reduce the restriction that the controller gain depends on global information.Considering the stability of the controller,we introduce a smooth continuous function to improve the piecewise controller to avoid possible chattering.Theoretical analyses prove the convergence of the presented algorithm,and simulation experiments verify the effectiveness of the algorithm.
基金the National Natural Science Foundation of China(No.61273058)
文摘In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-domain representation is constructed to derive an error model with relative degree one for our purpose. And time-varying radial basis function neural network is employed to deal with system uncertainty. A new signal is constructed by using a first-order filter, which removes the requirement of strict positive real(SPR) condition and identical initial condition of iterative learning control. Based on property of hyperbolic tangent function,the system tracing error is proved to converge to the origin as the iteration tends to infinity by constructing Lyapunov-like composite energy function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China(Nos.61374102,61433002 and 61120106009)High Education Science&Technology Fund Planning Project of Shandong Province of China(No.J14LN30)
文摘Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a specified tracking accuracy beyond the initial state variance.