期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
云计算中Hadoop技术研究与应用综述 被引量:74
1
作者 夏靖波 韦泽鲲 +1 位作者 付凯 陈珍 《计算机科学》 CSCD 北大核心 2016年第11期6-11,48,共7页
Hadoop作为当今云计算与大数据时代背景下最热门的技术之一,其相关生态圈与Spark技术的结合一同影响着学术发展和商业模式。首先介绍了Hadoop的起源和优势,阐明相关技术原理,如MapReduce,HDFS,YARN,Spark等;然后着重分析了当前Hadoop学... Hadoop作为当今云计算与大数据时代背景下最热门的技术之一,其相关生态圈与Spark技术的结合一同影响着学术发展和商业模式。首先介绍了Hadoop的起源和优势,阐明相关技术原理,如MapReduce,HDFS,YARN,Spark等;然后着重分析了当前Hadoop学术研究成果,从MapReduce算法的改进与创新、HDFS技术的优化与创新、二次开发与其它技术相结合、应用领域创新与实践4个方面进行总结,并简述了国内外应用现状。而Hadoop与Spark结合是未来的趋势,最后展望了Hadoop未来研究的发展方向和亟需解决的问题。 展开更多
关键词 云计算 大数据 hadoop spark mapreduce
下载PDF
适于进化算法的迭代式MapReduce框架 被引量:16
2
作者 金伟健 王春枝 《计算机应用》 CSCD 北大核心 2013年第12期3591-3595,共5页
MapReduce模块化的编程大大降低了分布式算法的实现难度,但同时也限制了它的应用范围。介绍了MapReduce的基本结构及其实现迭代算法的缺陷,并针对基于MapReduce进化算法效率低下的问题,在对MapReduce的计算框架进行研究的基础上提出了... MapReduce模块化的编程大大降低了分布式算法的实现难度,但同时也限制了它的应用范围。介绍了MapReduce的基本结构及其实现迭代算法的缺陷,并针对基于MapReduce进化算法效率低下的问题,在对MapReduce的计算框架进行研究的基础上提出了一种适用于进化算法的迭代式MapReduce计算框架。描述了迭代式MapReduce计算框架的实现需求及其具体实现,提出并证明了异常机制的可行性,且在公有的Hadoop云计算平台上对提出的框架进行了验证。实验结果表明,基于迭代式MapReduce计算框架的并行遗传算法在算法的加速比上与基于MapReduce的并行遗传算法相比有较大的提高。 展开更多
关键词 云计算 mapreduce 进化算法 迭代 hadoop
下载PDF
基于Spark的遥感数据分析方法 被引量:1
3
作者 陈峰科 孙众毅 池明旻 《微型电脑应用》 2015年第8期65-67,6,共3页
随着遥感技术的快速发展,遥感数据呈爆炸式增长,给遥感数据计算带来巨大的挑战。采用基于内存计算的Spark分布式计算框架以克服该问题,并选择YARN作为资源调度系统和采用HDFS为分布式存储系统。Spark是一个开源的分布式计算框架,基于弹... 随着遥感技术的快速发展,遥感数据呈爆炸式增长,给遥感数据计算带来巨大的挑战。采用基于内存计算的Spark分布式计算框架以克服该问题,并选择YARN作为资源调度系统和采用HDFS为分布式存储系统。Spark是一个开源的分布式计算框架,基于弹性分布式数据集(RDD)概念,采用先进的有向无环图执行机制以支持循环数据流操作,通过一次数据导入内存就可以完成多次迭代运算。因而,特别适合基于多次迭代的大数据计算分析方法,相较于每轮迭代需把数据导入内存的Map Reduce有更大的优势。将该计算框架应用于海量遥感数据分析,验证需要多次迭代的奇异值分解(SVD)算法在该数据分析中的有效性。实验表明,随着迭代次数增加,基于Spark的SVD运算效率相对于Map Reduce有明显提高,通常可提高一个数量级。 展开更多
关键词 大数据计算 遥感数据 hadoop spark mapreduce
下载PDF
Accelerating Iterative Big Data Computing Through MPI 被引量:5
4
作者 梁帆 鲁小亿 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第2期283-294,共12页
Current popular systems, Hadoop and Spark, cannot achieve satisfied performance because of the inefficient overlapping of computation and communication when running iterative big data applications. The pipeline of com... Current popular systems, Hadoop and Spark, cannot achieve satisfied performance because of the inefficient overlapping of computation and communication when running iterative big data applications. The pipeline of computing, data movement, and data management plays a key role for current distributed data computing systems. In this paper, we first analyze the overhead of shuffle operation in Hadoop and Spark when running PageRank workload, and then propose an event-driven pipeline and in-memory shuffle design with better overlapping of computation and communication as DataMPI- Iteration, an MPI-based library, for iterative big data computing. Our performance evaluation shows DataMPI-Iteration can achieve 9X-21X speedup over Apache Hadoop, and 2X-3X speedup over Apache Spark for PageRank and K-means. 展开更多
关键词 iterative computation datampi spark hadoop mapreduce
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部