With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and...With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and hence causes an increase in the raw bit error rate of data stored in the cells.Recently, low-density parity-check(LDPC)codes have appeared to be a promising solution to combat the interference of MLC NAND flash memory. However, the decoding complexity of the sum-product algorithm(SPA) is extremely high. In this paper, to improve the accuracy of the log likelihood ratio(LLR) information of each bit in each NAND flash memory cell, we adopt a non-uniform detection(N-UD) which uses the average maximum mutual information to determine the value of the soft-decision reference voltages.Furthermore, with an aim to reduce the decoding complexity and improve the decoding performance, we propose a modified soft reliabilitybased iterative majority-logic decoding(MSRBI-MLGD) algorithm, which uses a non-uniform quantizer based on power function to decode LDPC codes. Simulation results show that our design can offer a desirable trade-off between the performance and complexity for high-column-weight LDPC-coded MLC NAND flash memory.展开更多
A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the enco...A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.展开更多
In FSO(Free-Space Optical)communications,performance of the communication systems is severely degraded by atmospheric turbulence.PPM(Pulse Position Modulation)is widely used in FSO communication systems owing to its h...In FSO(Free-Space Optical)communications,performance of the communication systems is severely degraded by atmospheric turbulence.PPM(Pulse Position Modulation)is widely used in FSO communication systems owing to its high power efficiency.In this paper,we present a combination of the BMST(Block Markov Superposition Transmission)technique and the PPM scheme to improve the reliability of the transmission over FSO links.Based on analyzing an equivalent system,a lower bound on the bit-error-rate of the proposed scheme is presented.Extensive simulations are performed which show that the BMST-PPM system performs well under a wide range of turbulence conditions and improves the performance of the basic code.Simulation results also show that,the performance of the system with the sliding-window detection/decoding algorithm matches well with the lower bound in the low-error-rate region.展开更多
基金supported in part by the NSF of China (61471131, 61771149, 61501126)NSF of Guangdong Province 2016A030310337+1 种基金the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2018D02)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2017-ZJ022)
文摘With the development of manufacture technology, the multi-level cell(MLC)technique dramatically increases the storage density of NAND flash memory. As the result,cell-to-cell interference(CCI) becomes more serious and hence causes an increase in the raw bit error rate of data stored in the cells.Recently, low-density parity-check(LDPC)codes have appeared to be a promising solution to combat the interference of MLC NAND flash memory. However, the decoding complexity of the sum-product algorithm(SPA) is extremely high. In this paper, to improve the accuracy of the log likelihood ratio(LLR) information of each bit in each NAND flash memory cell, we adopt a non-uniform detection(N-UD) which uses the average maximum mutual information to determine the value of the soft-decision reference voltages.Furthermore, with an aim to reduce the decoding complexity and improve the decoding performance, we propose a modified soft reliabilitybased iterative majority-logic decoding(MSRBI-MLGD) algorithm, which uses a non-uniform quantizer based on power function to decode LDPC codes. Simulation results show that our design can offer a desirable trade-off between the performance and complexity for high-column-weight LDPC-coded MLC NAND flash memory.
文摘A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.
基金supported by the Basic Research Project of Guangdong Provincial Natural Science Foundation(No.2016A030308008)the National Natural Science Foundation of China(Nos.91438101 and 61501206)the National Basic Research Program of China(“973”Program)(No.2012CB316100)。
文摘In FSO(Free-Space Optical)communications,performance of the communication systems is severely degraded by atmospheric turbulence.PPM(Pulse Position Modulation)is widely used in FSO communication systems owing to its high power efficiency.In this paper,we present a combination of the BMST(Block Markov Superposition Transmission)technique and the PPM scheme to improve the reliability of the transmission over FSO links.Based on analyzing an equivalent system,a lower bound on the bit-error-rate of the proposed scheme is presented.Extensive simulations are performed which show that the BMST-PPM system performs well under a wide range of turbulence conditions and improves the performance of the basic code.Simulation results also show that,the performance of the system with the sliding-window detection/decoding algorithm matches well with the lower bound in the low-error-rate region.