Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioni...Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.展开更多
Traditionally, fractal image compression suffers from lengthy encoding time in measure ofhours. In this paper, combined with characteristlcs of human visual system, a flexible classification technique is proposed. Thi...Traditionally, fractal image compression suffers from lengthy encoding time in measure ofhours. In this paper, combined with characteristlcs of human visual system, a flexible classification technique is proposed. This yields a corresponding adaptive algorithm which can cut down the encoding timeinto second's magnitude. Experiment results suggest that the algorithm can balance the overall encodingperformance efficiently, that is, with a higher speed and a better PSNR gain.展开更多
When we use Modified Configuration Interaction method(MCI) to calculate the correlation energy of double electron systems, for obtaining the higher precision, we always need huge calculations. In order to handle this...When we use Modified Configuration Interaction method(MCI) to calculate the correlation energy of double electron systems, for obtaining the higher precision, we always need huge calculations. In order to handle this problem, which will cost much CPU time and memory room if only using a single computer to do it, we now adopt the parallel multisection recurrence algorithm. Thus we can use several CPUs to get the ground state energy of a Helium atom at the same time.展开更多
Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two...Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two-stage enhanced-iterative-algorithm PTS(TS-EIA-PTS) PAPR reduction algorithm with lower computational complexity is proposed in this paper. The simulation results show that the proposed TS-EIA-PTS PAPR reduction algorithm can reduce the computational complexity by 18.47% in the condition of the original signal sequence partitioned into 4 sub-blocks at the remaining stage of n-d=5. Furthermore, it has almost the same PAPR reduction performance and the same bit error rate(BER) performance as the EIA-PTS algorithm, and with the increase of the subcarrier number, the computational complexity can be further reduced. As a result, the proposed TS-EIA-PTS PAPR reduction algorithm is more suitable for the practical O-OFDM systems.展开更多
To improve the computational efficiency and hold calculation accuracy at the same time,we study the parallel computation for radiation heat transfer. In this paper, the discrete ordinates method(DOM) and the spatial...To improve the computational efficiency and hold calculation accuracy at the same time,we study the parallel computation for radiation heat transfer. In this paper, the discrete ordinates method(DOM) and the spatial domain decomposition parallelization(DDP) are combined by message passing interface(MPI) language. The DDP–DOM computation of the radiation heat transfer within the rectangular furnace is described. When the result of DDP–DOM along one-dimensional direction is compared with that along multi-dimensional directions, it is found that the result of the latter one has higher precision without considering the medium scattering. Meanwhile, an in-depth study of the convergence of DDP–DOM for radiation heat transfer is made. Analyzing the cause of the weak convergence, we relate the total number of iteration steps when the convergence is obtained to the number of sub-domains. When we decompose the spatial domain along one-,two- and three-dimensional directions, different linear relationships between the number of total iteration steps and the number of sub-domains will be possessed separately, then several equations are developed to show the relationships. Using the equations, some phenomena in DDP–DOM can be made clear easily. At the same time, the correctness of the equations is verified.展开更多
基金funded by the National Natural Science Foundation of China(52077004)Anhui Electric Power Company of the State Grid(52120021N00L).
文摘Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.
文摘Traditionally, fractal image compression suffers from lengthy encoding time in measure ofhours. In this paper, combined with characteristlcs of human visual system, a flexible classification technique is proposed. This yields a corresponding adaptive algorithm which can cut down the encoding timeinto second's magnitude. Experiment results suggest that the algorithm can balance the overall encodingperformance efficiently, that is, with a higher speed and a better PSNR gain.
文摘When we use Modified Configuration Interaction method(MCI) to calculate the correlation energy of double electron systems, for obtaining the higher precision, we always need huge calculations. In order to handle this problem, which will cost much CPU time and memory room if only using a single computer to do it, we now adopt the parallel multisection recurrence algorithm. Thus we can use several CPUs to get the ground state energy of a Helium atom at the same time.
基金supported by the National Natural Science Foundation of China(Nos.61472464 and 61471075)the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.J2013-46)+1 种基金the Natural Science Foundation of Chongqing Science and Technology Commission(Nos.cstc2015jcyj A0554 and cstc2013jcyj A40017)the Program for Postgraduate Science Research and Innovation of Chongqing University of Posts and Telecommunications(Chongqing Municipal Education Commission)(No.CYS14144)
文摘Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two-stage enhanced-iterative-algorithm PTS(TS-EIA-PTS) PAPR reduction algorithm with lower computational complexity is proposed in this paper. The simulation results show that the proposed TS-EIA-PTS PAPR reduction algorithm can reduce the computational complexity by 18.47% in the condition of the original signal sequence partitioned into 4 sub-blocks at the remaining stage of n-d=5. Furthermore, it has almost the same PAPR reduction performance and the same bit error rate(BER) performance as the EIA-PTS algorithm, and with the increase of the subcarrier number, the computational complexity can be further reduced. As a result, the proposed TS-EIA-PTS PAPR reduction algorithm is more suitable for the practical O-OFDM systems.
基金co-supported by the National Nature Science Foundation of China(No.51176039)the Ph.D.Programs Foundation of Ministry of Education of China(No.20102302110015)
文摘To improve the computational efficiency and hold calculation accuracy at the same time,we study the parallel computation for radiation heat transfer. In this paper, the discrete ordinates method(DOM) and the spatial domain decomposition parallelization(DDP) are combined by message passing interface(MPI) language. The DDP–DOM computation of the radiation heat transfer within the rectangular furnace is described. When the result of DDP–DOM along one-dimensional direction is compared with that along multi-dimensional directions, it is found that the result of the latter one has higher precision without considering the medium scattering. Meanwhile, an in-depth study of the convergence of DDP–DOM for radiation heat transfer is made. Analyzing the cause of the weak convergence, we relate the total number of iteration steps when the convergence is obtained to the number of sub-domains. When we decompose the spatial domain along one-,two- and three-dimensional directions, different linear relationships between the number of total iteration steps and the number of sub-domains will be possessed separately, then several equations are developed to show the relationships. Using the equations, some phenomena in DDP–DOM can be made clear easily. At the same time, the correctness of the equations is verified.