期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nonconvex Sorted l1 Minimization for Sparse Approximation 被引量:1
1
作者 Xiao-Lin Huang Lei Shi Ming Yan 《Journal of the Operations Research Society of China》 EI CSCD 2015年第2期207-229,共23页
The l1 norm is the tight convex relaxation for the l0 norm and has been successfully applied for recovering sparse signals.However,for problems with fewer samples than required for accurate l1 recovery,one needs to ap... The l1 norm is the tight convex relaxation for the l0 norm and has been successfully applied for recovering sparse signals.However,for problems with fewer samples than required for accurate l1 recovery,one needs to apply nonconvex penalties such as lp norm.As one method for solving lp minimization problems,iteratively reweighted l1 minimization updates the weight for each component based on the value of the same component at the previous iteration.It assigns large weights on small components in magnitude and small weights on large components in magnitude.The set of the weights is not fixed,and it makes the analysis of this method difficult.In this paper,we consider a weighted l1 penalty with the set of the weights fixed,and the weights are assigned based on the sort of all the components in magnitude.The smallest weight is assigned to the largest component in magnitude.This new penalty is called nonconvex sorted l1.Then we propose two methods for solving nonconvex sorted l1 minimization problems:iteratively reweighted l1 minimization and iterative sorted thresholding,and prove that both methods will converge to a local minimizer of the nonconvex sorted l1 minimization problems.We also show that both methods are generalizations of iterative support detection and iterative hard thresholding,respectively.The numerical experiments demonstrate the better performance of assigning weights by sort compared to assigning by value. 展开更多
关键词 iteratively reweighted1 minimization iterative sorted thresholding Local minimizer Nonconvex optimization Sparse approximation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部