为提高快速迭代收缩阈值算法(Fast Iterative Shrinkage-Thresholding Algorithm,FISTA)在反卷积波束形成中的空间分辨率以及计算速度,采用基于快速傅里叶变换的声学模型,引入过松弛方法和“贪婪”重启策略,提出两种改进的快速迭代收缩...为提高快速迭代收缩阈值算法(Fast Iterative Shrinkage-Thresholding Algorithm,FISTA)在反卷积波束形成中的空间分辨率以及计算速度,采用基于快速傅里叶变换的声学模型,引入过松弛方法和“贪婪”重启策略,提出两种改进的快速迭代收缩阈值算法,即基于快速傅里叶变换的过松弛单调快速迭代收缩阈值算法(Over-relaxed Monotone Fast Iterative Shrinkage-Thresholding Algorithm based on Fast Fourier Transform,FFT-OMFISTA)和基于快速傅里叶变换的“贪婪”快速迭代收缩阈值算法("Greedy"Fast Iterative Shrinkage-Thresholding Algorithm based on Fast Fourier Transform,FFT-GFISTA),并应用于反卷积波束形成的求解过程中。设计了单声源和双声源的仿真与实验,验证了所提算法的有效性与优越性。结果表明,两种所提算法都具有良好的性能,都能在声源定位中实现更高的空间分辨率以及更快的计算速度。展开更多
针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信...针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信号多快拍条件下的DOA估计模型,然后,采用迭代收缩阈值算法解决稀疏重构问题,求解出信号的稀疏系数矩阵,最后,将稀疏矩阵中行向量的范数映射到划分好的网格上,得到DOA估计值。仿真实验结果表明:该方法在低信噪比、小快拍条件下比OMP、 MUSIC和CBF等传统算法拥有更高的DOA估计精度和更强的鲁棒性。展开更多
在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法...在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法相结合,提出一种改进的基于深度学习的波束空间信道估计算法。从重建过程入手,通过交替建立梯度下降模块(GDM)和近端映射模块(PMM)来构建网络。首先根据SalehValenzuela信道模型进行理论公式推导并生成信道数据;其次构建一个由传统迭代收缩阈值算法(ISTA)的更新步骤所展开的多层网络,并将数据传输到该网络,每层对应于一次类似ISTA的迭代;最后对训练好的模型进行在线测试,恢复出待估计的信道。构建Py Torch环境,将该算法与正交匹配追踪(OMP)算法、近似消息传递(AMP)算法、可学习的近似消息传递(LAMP)算法、高斯混合LAMP(GM-LAMP)算法进行对比,结果表明:在估计精度方面,所提算法相对表现较好的深度学习算法LAMP、GM-LAMP分别提升约3.07和2.61 d B,较传统算法OMP、AMP分别提升约11.12和9.57 d B;在参数量方面,所提算法较LAMP、GM-LAMP分别减少约39%和69%。展开更多
文摘为提高快速迭代收缩阈值算法(Fast Iterative Shrinkage-Thresholding Algorithm,FISTA)在反卷积波束形成中的空间分辨率以及计算速度,采用基于快速傅里叶变换的声学模型,引入过松弛方法和“贪婪”重启策略,提出两种改进的快速迭代收缩阈值算法,即基于快速傅里叶变换的过松弛单调快速迭代收缩阈值算法(Over-relaxed Monotone Fast Iterative Shrinkage-Thresholding Algorithm based on Fast Fourier Transform,FFT-OMFISTA)和基于快速傅里叶变换的“贪婪”快速迭代收缩阈值算法("Greedy"Fast Iterative Shrinkage-Thresholding Algorithm based on Fast Fourier Transform,FFT-GFISTA),并应用于反卷积波束形成的求解过程中。设计了单声源和双声源的仿真与实验,验证了所提算法的有效性与优越性。结果表明,两种所提算法都具有良好的性能,都能在声源定位中实现更高的空间分辨率以及更快的计算速度。
文摘针对传统波达方向(Direction of Arrival, DOA)估计算法在低信噪比、小快拍的条件下估计精度不高的问题,提出了一种基于迭代收缩阈值算法的矢量水听器阵列多快拍DOA估计方法。首先,对空域进行等角度划分,构造超完备冗余字典,建立基于信号多快拍条件下的DOA估计模型,然后,采用迭代收缩阈值算法解决稀疏重构问题,求解出信号的稀疏系数矩阵,最后,将稀疏矩阵中行向量的范数映射到划分好的网格上,得到DOA估计值。仿真实验结果表明:该方法在低信噪比、小快拍条件下比OMP、 MUSIC和CBF等传统算法拥有更高的DOA估计精度和更强的鲁棒性。
文摘在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法相结合,提出一种改进的基于深度学习的波束空间信道估计算法。从重建过程入手,通过交替建立梯度下降模块(GDM)和近端映射模块(PMM)来构建网络。首先根据SalehValenzuela信道模型进行理论公式推导并生成信道数据;其次构建一个由传统迭代收缩阈值算法(ISTA)的更新步骤所展开的多层网络,并将数据传输到该网络,每层对应于一次类似ISTA的迭代;最后对训练好的模型进行在线测试,恢复出待估计的信道。构建Py Torch环境,将该算法与正交匹配追踪(OMP)算法、近似消息传递(AMP)算法、可学习的近似消息传递(LAMP)算法、高斯混合LAMP(GM-LAMP)算法进行对比,结果表明:在估计精度方面,所提算法相对表现较好的深度学习算法LAMP、GM-LAMP分别提升约3.07和2.61 d B,较传统算法OMP、AMP分别提升约11.12和9.57 d B;在参数量方面,所提算法较LAMP、GM-LAMP分别减少约39%和69%。