Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this pape...By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.展开更多
Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in r...Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFF) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively.展开更多
In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower...In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower solutions, a new monotone iterative technique on the boundary value problem of integro-differential equations was proposed. The existence and uniqueness of iterative solutions and the error estimation in certain interval were obtained.An example was also given to illustrate the results.展开更多
This paper deals with fractional integro-differential equations involving Hadamard fractional derivatives and nonlinear boundary conditions in an ordered Banach space. The nonlinearity is allowed to be singular with r...This paper deals with fractional integro-differential equations involving Hadamard fractional derivatives and nonlinear boundary conditions in an ordered Banach space. The nonlinearity is allowed to be singular with respect to time variable. Under some monotonicity conditions and noncompactness measure conditions, we use the method of coupled lower and upper L-quasisolutions associated with the mixed monotone iterative technique to investigate the existence of extremal L-quasisolutions. A unique solution between coupled lower and upper L-quasisolutions is also obtained. An example is given to illustrate our theoretical results. The results got in this paper are new and enrich the existing related work.展开更多
The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish...Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.展开更多
In this paper, the following initial value problem for nonlinear integro-differential equationis considered , whereUsing the method of upper and lower solutions and the monotone iterative technique .We obtain exist...In this paper, the following initial value problem for nonlinear integro-differential equationis considered , whereUsing the method of upper and lower solutions and the monotone iterative technique .We obtain existence results of minimal and maximal solutions .展开更多
This paper investigates the maximal and minimal solutions of initial value problems for second order nonlinear integro-differential equations of Volterra type on a finite interval in a Banach space by establishing a c...This paper investigates the maximal and minimal solutions of initial value problems for second order nonlinear integro-differential equations of Volterra type on a finite interval in a Banach space by establishing a comparison result and using the monotone iterative technique.展开更多
The existence and iteration of positive solution for classical Gelfand models are considered, where the coefficient of nonlinear term is allowed to change sign in [0, 1]. By using the monotone iterative technique, an ...The existence and iteration of positive solution for classical Gelfand models are considered, where the coefficient of nonlinear term is allowed to change sign in [0, 1]. By using the monotone iterative technique, an existence theorem of positive solution is obtained, corresponding iterative process and convergence rate are given. This iterative process starts off with zero function, hence the process is simple, feasible and effective.展开更多
In this paper, the skew-increasing operators and their coupled fixed points are defined. It is proved that the existence of coupled fixed points and fixed point theorem for skew-increasing operators, and the iterative...In this paper, the skew-increasing operators and their coupled fixed points are defined. It is proved that the existence of coupled fixed points and fixed point theorem for skew-increasing operators, and the iterative formula are given.展开更多
The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear ...The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear dynamical systems from incompleteexperimental data. The mass, stiffness, and damping matrices are assumed to be real,symmetric, and positive definite. The partial set of experimental complex eigenvalues and corresponding eigenvectors are given. In the proposed method the least squaresalgorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters. several illustrative examples, are presented to demonstrate the reliability of the proposed method .It is emphasized thatthe mass, damping and stiffness martices can be identified simultaneously.展开更多
The accurate mathematical models for complicated structures are very difficult to construct.The work presented here provides an identification method for estimating the mass.damping,and stiffness matrices of linear dy...The accurate mathematical models for complicated structures are very difficult to construct.The work presented here provides an identification method for estimating the mass.damping,and stiffness matrices of linear dynamical systems from incomplete experimental data.The mass,stiffness and damping matrices are assumed to be real,symmetric,and positive definite The partial set of experimental complex eigenvalues and corresponding eigenvectors are given.In the proposed method the least squares algorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters.Seeveral illustative examples,are presented to demonstrate the reliability of the proposed method .It is emphasized that the mass,damping and stiffness matrices can be identified simultaneously.展开更多
The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained. ...The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained. Furthermore, it also developed a monotone iterative technique for obtaining solutions which are obtained as limits of monotone sequences展开更多
In this paper, we consider a class of nonlinear fractional differential equation boundary value problem. The existence of monotone positive solution is derived by the iterative technique.
The periodic boundary value problems for nonlinear functional differential equa- tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal ...The periodic boundary value problems for nonlinear functional differential equa- tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal or reverse order.展开更多
In this paper, we show that the method of monotone iterative technique is valid to obtain two monotone sequences that converge uniformly to extremal solutions to second order periodic boundary value problems and perio...In this paper, we show that the method of monotone iterative technique is valid to obtain two monotone sequences that converge uniformly to extremal solutions to second order periodic boundary value problems and periodic solutions of functional difference equations. We obtain some new results under the lower solution α and upper solutionβ with α≤β展开更多
This paper studies the existence of solutions for mixed monotone impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces. By using the mi...This paper studies the existence of solutions for mixed monotone impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces. By using the mixed monotone iterative technique and Monch fixed point theorem, Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained. Finally, an example is worked out.展开更多
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
文摘By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.
基金Projected supported by the National High Technology Research and Development Program of China(Grant No.2012AA011603)the National Natura Science Foundation of China(Grant No.61372172)
文摘Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFF) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively.
基金National Natural Science Foundation of China(No.11271372)Hunan Provincial National Natural Science Foundation of China(No.12JJ2004)Central South University Graduate Innovation Project,China(No.2014zzts136)
文摘In this paper,the existence and uniqueness of iterative solutions to the boundary value problems for a class of first order impulsive integro-differential equations were studied. Under a new concept of upper and lower solutions, a new monotone iterative technique on the boundary value problem of integro-differential equations was proposed. The existence and uniqueness of iterative solutions and the error estimation in certain interval were obtained.An example was also given to illustrate the results.
文摘This paper deals with fractional integro-differential equations involving Hadamard fractional derivatives and nonlinear boundary conditions in an ordered Banach space. The nonlinearity is allowed to be singular with respect to time variable. Under some monotonicity conditions and noncompactness measure conditions, we use the method of coupled lower and upper L-quasisolutions associated with the mixed monotone iterative technique to investigate the existence of extremal L-quasisolutions. A unique solution between coupled lower and upper L-quasisolutions is also obtained. An example is given to illustrate our theoretical results. The results got in this paper are new and enrich the existing related work.
文摘The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.
文摘In this paper, the following initial value problem for nonlinear integro-differential equationis considered , whereUsing the method of upper and lower solutions and the monotone iterative technique .We obtain existence results of minimal and maximal solutions .
文摘This paper investigates the maximal and minimal solutions of initial value problems for second order nonlinear integro-differential equations of Volterra type on a finite interval in a Banach space by establishing a comparison result and using the monotone iterative technique.
文摘The existence and iteration of positive solution for classical Gelfand models are considered, where the coefficient of nonlinear term is allowed to change sign in [0, 1]. By using the monotone iterative technique, an existence theorem of positive solution is obtained, corresponding iterative process and convergence rate are given. This iterative process starts off with zero function, hence the process is simple, feasible and effective.
文摘In this paper, the skew-increasing operators and their coupled fixed points are defined. It is proved that the existence of coupled fixed points and fixed point theorem for skew-increasing operators, and the iterative formula are given.
文摘The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear dynamical systems from incompleteexperimental data. The mass, stiffness, and damping matrices are assumed to be real,symmetric, and positive definite. The partial set of experimental complex eigenvalues and corresponding eigenvectors are given. In the proposed method the least squaresalgorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters. several illustrative examples, are presented to demonstrate the reliability of the proposed method .It is emphasized thatthe mass, damping and stiffness martices can be identified simultaneously.
文摘The accurate mathematical models for complicated structures are very difficult to construct.The work presented here provides an identification method for estimating the mass.damping,and stiffness matrices of linear dynamical systems from incomplete experimental data.The mass,stiffness and damping matrices are assumed to be real,symmetric,and positive definite The partial set of experimental complex eigenvalues and corresponding eigenvectors are given.In the proposed method the least squares algorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters.Seeveral illustative examples,are presented to demonstrate the reliability of the proposed method .It is emphasized that the mass,damping and stiffness matrices can be identified simultaneously.
基金National Natural Science Foundation ofChina( No.1983 10 3 0 and No.10 0 0 10 2 4
文摘The finite-time stability to linear discontinuous time-varying delayed system was investigated. By applying the method of upper and lower solutions, some sufficient conditions of this kind of stability were obtained. Furthermore, it also developed a monotone iterative technique for obtaining solutions which are obtained as limits of monotone sequences
基金Supported by Teaching Reform Project of Higher Education Institutions in Shanxi (Grant No. J2020417)。
文摘In this paper, we consider a class of nonlinear fractional differential equation boundary value problem. The existence of monotone positive solution is derived by the iterative technique.
基金Supported by the Education Department Foundation of Shandong Province(J07WH01)
文摘The periodic boundary value problems for nonlinear functional differential equa- tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal or reverse order.
文摘In this paper, we show that the method of monotone iterative technique is valid to obtain two monotone sequences that converge uniformly to extremal solutions to second order periodic boundary value problems and periodic solutions of functional difference equations. We obtain some new results under the lower solution α and upper solutionβ with α≤β
文摘This paper studies the existence of solutions for mixed monotone impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces. By using the mixed monotone iterative technique and Monch fixed point theorem, Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained. Finally, an example is worked out.