期刊文献+
共找到25,573篇文章
< 1 2 250 >
每页显示 20 50 100
Data-Driven Active Disturbance Rejection Control of Plant-Protection Unmanned Ground Vehicle Prototype: A Fuzzy Indirect Iterative Learning Approach
1
作者 Tao Chen Ruiyuan Zhao +1 位作者 Jian Chen Zichao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1892-1894,共3页
Dear Editor,This letter proposes a fuzzy indirect iterative learning(FIIL)active disturbance rejection control(ADRC)scheme to address the impact of uncertain factors of plant-protection unmanned ground vehicle(UGV),in... Dear Editor,This letter proposes a fuzzy indirect iterative learning(FIIL)active disturbance rejection control(ADRC)scheme to address the impact of uncertain factors of plant-protection unmanned ground vehicle(UGV),in which ADRC is a data-driven model-free control algorithm that only relies on the input and output data of the system.Based on the established nonlinear time-varying dynamic model including dynamic load(medicine box),the FIIL technology is adopted to turn the bandwidth and control channel gain online,in which the fuzzy logic system is used to update the gain parameters of iterative learning in real time.Simulation and experiment show the FIIL-ADRC scheme has better control performance. 展开更多
关键词 Active scheme iterative
下载PDF
Fault Estimation for a Class of Markov Jump Piecewise-Affine Systems: Current Feedback Based Iterative Learning Approach
2
作者 Yanzheng Zhu Nuo Xu +2 位作者 Fen Wu Xinkai Chen Donghua Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期418-429,共12页
In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a n... In this paper, the issues of stochastic stability analysis and fault estimation are investigated for a class of continuoustime Markov jump piecewise-affine(PWA) systems against actuator and sensor faults. Firstly, a novel mode-dependent PWA iterative learning observer with current feedback is designed to estimate the system states and faults, simultaneously, which contains both the previous iteration information and the current feedback mechanism. The auxiliary feedback channel optimizes the response speed of the observer, therefore the estimation error would converge to zero rapidly. Then, sufficient conditions for stochastic stability with guaranteed performance are demonstrated for the estimation error system, and the equivalence relations between the system information and the estimated information can be established via iterative accumulating representation.Finally, two illustrative examples containing a class of tunnel diode circuit systems are presented to fully demonstrate the effectiveness and superiority of the proposed iterative learning observer with current feedback. 展开更多
关键词 Current feedback fault estimation iterative learning observer Markov jump piecewise-affine system
下载PDF
Iterative physical optics method based on efficient occlusion judgment with bounding volume hierarchy technology
3
作者 Yang Su Yu-Mao Wu Jun Hu 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期1-12,共12页
This paper builds a binary tree for the target based on the bounding volume hierarchy technology,thereby achieving strict acceleration of the shadow judgment process and reducing the computational complexity from the ... This paper builds a binary tree for the target based on the bounding volume hierarchy technology,thereby achieving strict acceleration of the shadow judgment process and reducing the computational complexity from the original O(N^(3))to O(N^(2)logN).Numerical results show that the proposed method is more efficient than the traditional method.It is verified in multiple examples that the proposed method can complete the convergence of the current.Moreover,the proposed method avoids the error of judging the lit-shadow relationship based on the normal vector,which is beneficial to current iteration and convergence.Compared with the brute force method,the current method can improve the simulation efficiency by 2 orders of magnitude.The proposed method is more suitable for scattering problems in electrically large cavities and complex scenarios. 展开更多
关键词 Bounding volume hierarchy Cavity scattering iterative physical optics(IPO)
下载PDF
A Modified Iterative Learning Control Approach for the Active Suppression of Rotor Vibration Induced by Coupled Unbalance and Misalignment
4
作者 Yifan Bao Jianfei Yao +1 位作者 Fabrizio Scarpa Yan Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期242-253,共12页
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr... This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed. 展开更多
关键词 Rotor vibration suppression Modified iterative learning control UNBALANCE Parallel misalignment Active magnetic actuator
下载PDF
Co-salient object detection with iterative purification and predictive optimization
5
作者 Yang WEN Yuhuan WANG +2 位作者 Hao WANG Wuzhen SHI Wenming CAO 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期396-407,共12页
Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant info... Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation.These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.Methods To address this issue,this study introduces a novel Co-SOD method with iterative purification and predictive optimization(IPPO)comprising a common salient purification module(CSPM),predictive optimizing module(POM),and diminishing mixed enhancement block(DMEB).Results These components are designed to explore noise-free joint representations,assist the model in enhancing the quality of the final prediction results,and significantly improve the performance of the Co-SOD algorithm.Furthermore,through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM,POM,and DMEB,our experiments confirmed that these components are pivotal in enhancing the performance of the model,substantiating the significant advancements of our method over existing benchmarks.Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance. 展开更多
关键词 Co-salient object detection Saliency detection iterative method Predictive optimization
下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
6
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
下载PDF
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking
7
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
下载PDF
The Alternating Group Explicit Iterative Method for the Regularized Long-Wave Equation
8
作者 Anqi Xie Xiaojia Ye Guanyu Xue 《Journal of Applied Mathematics and Physics》 2024年第1期52-59,共8页
An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solutio... An Alternating Group Explicit (AGE) iterative method with intrinsic parallelism is constructed based on an implicit scheme for the Regularized Long-Wave (RLW) equation. The method can be used for the iteration solution of a general tridiagonal system of equations with diagonal dominance. It is not only easy to implement, but also can directly carry out parallel computation. Convergence results are obtained by analysing the linear system. Numerical experiments show that the theory is accurate and the scheme is valid and reliable. 展开更多
关键词 RLW Equation AGE iterative Method PARALLELISM CONVERGENCE
下载PDF
Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm
9
作者 Jin-Hui Ye Dan Shi +2 位作者 Yue-Sheng Qi Jin-Hui Gao Jian-Xin Shen 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期61-71,共11页
Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the... Active Magnetic Bearing(AMB) is a kind of electromagnetic support that makes the rotor movement frictionless and can suppress rotor vibration by controlling the magnetic force. The most common approach to restrain the rotor vibration in AMBs is to adopt a notch filter or adaptive filter in the AMB controller. However, these methods cannot obtain the precise amplitude and phase of the compensation current. Thus, they are not so effective in terms of suppressing the vibrations of the fundamental and other harmonic orders over the whole speed range. To improve the vibration suppression performance of AMBs,an adaptive filter based on Least Mean Square(LMS) is applied to extract the vibration signals from the rotor displacement signal. An Iterative Search Algorithm(ISA) is proposed in this paper to obtain the corresponding relationship between the compensation current and vibration signals. The ISA is responsible for searching the compensating amplitude and shifting phase online for the LMS filter, enabling the AMB controller to generate the corresponding compensation force for vibration suppression. The results of ISA are recorded to suppress vibration using the Look-Up Table(LUT) in variable speed range. Comprehensive simulations and experimental validations are carried out in fixed and variable speed range, and the results demonstrate that by employing the ISA, vibrations of the fundamental and other harmonic orders are suppressed effectively. 展开更多
关键词 Active Magnetic Bearing(AMB) Adaptive filter iterative search algorithm Least mean square(LMS) Vibration suppression
下载PDF
Low-complexity signal detection for massive MIMO systems via trace iterative method
10
作者 IMRAN A.Khoso ZHANG Xiaofei +2 位作者 ABDUL Hayee Shaikh IHSAN A.Khoso ZAHEER Ahmed Dayo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期549-557,共9页
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent... Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas. 展开更多
关键词 signal detection LOW-COMPLEXITY linear minimum mean square error(MMSE) massive multiple-input multiple-output(MIMO) trace iterative method(TIM)
下载PDF
基于Iterative映射和非线性拟合的鲸鱼优化算法 被引量:1
11
作者 李赛宇 鞠传香 丁航奇 《重庆大学学报》 CAS CSCD 北大核心 2023年第8期120-131,共12页
为解决鲸鱼优化算法中收敛速度慢和寻优精度低等问题,提出一种基于Iterative映射和非线性拟合的鲸鱼优化算法(NWOA)。首先,该算法利用了Iterative映射对鲸鱼种群初始化,保证初始种群的多样性;其次,采用非线性拟合的策略对收敛因子和惯... 为解决鲸鱼优化算法中收敛速度慢和寻优精度低等问题,提出一种基于Iterative映射和非线性拟合的鲸鱼优化算法(NWOA)。首先,该算法利用了Iterative映射对鲸鱼种群初始化,保证初始种群的多样性;其次,采用非线性拟合的策略对收敛因子和惯性权重进行改进,以平衡算法的全局勘测能力和局部开发能力。通过对13种函数进行仿真实验,从均方差和平均值的角度分析,改进后算法寻优精度显著提高,且稳定性较强。实验结果表明NWOA与传统的鲸鱼优化算法相比,收敛速度明显加快。 展开更多
关键词 鲸鱼优化算法 iterative映射 非线性拟合 函数优化
下载PDF
全钨ITER朗缪尔探针的高热负荷测试及损伤行为
12
作者 洪佑承 聂林 +7 位作者 王建豹 柯良金 赵伟 封范 金羽中 练友运 刘翔 刘春佳 《福建冶金》 2024年第5期44-49,共6页
本文研究了全钨ITER朗缪尔探针在高热负荷条件下的耐热性能、绝缘性能和损伤行为。利用核工业西南物理研究院的60 kW电子束测试平台,对探针在10 MW/m^(2)稳态热负荷、20 MW/m^(2)瞬态热负荷及15 MW/m^(2)高参数稳态热负荷下进行模拟测... 本文研究了全钨ITER朗缪尔探针在高热负荷条件下的耐热性能、绝缘性能和损伤行为。利用核工业西南物理研究院的60 kW电子束测试平台,对探针在10 MW/m^(2)稳态热负荷、20 MW/m^(2)瞬态热负荷及15 MW/m^(2)高参数稳态热负荷下进行模拟测试。实验结果表明,全钨朗缪尔探针能够承受10 MW/m^(2)热负荷100分钟、20 MW/m^(2)热负荷300次循环以及15 MW/m^(2)热负荷3000次循环。在15 MW/m^(2)条件下,探针表面在前1000次循环中无明显损伤,但在3000次循环后出现裂纹,且部分探针表面发生再结晶现象。研究表明,现有全钨朗缪尔探针的设计能够满足当前ITER装置的服役条件,但面对未来DEMO堆更加苛刻的条件可能还需要进一步优化。 展开更多
关键词 iter 朗缪尔探针 高热负荷测试 损伤行为
下载PDF
Iteration dependent interval based open‐closed‐loop iterative learning control for time varying systems with vector relative degree
13
作者 Yun‐Shan Wei Jin‐Fan Wang +2 位作者 Jia‐Xuan Wang Qing‐Yuan Xu Jaime Lloret 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期645-660,共16页
For linear time varying(LTV)multiple input multiple output(MIMO)systems with vector relative degree,an open‐closed‐loop iterative learning control(ILC)strategy is developed in this article,where the time interval of... For linear time varying(LTV)multiple input multiple output(MIMO)systems with vector relative degree,an open‐closed‐loop iterative learning control(ILC)strategy is developed in this article,where the time interval of operation is iteration dependent.To compensate the missing tracking signal caused by iteration dependent interval,the feedback control is introduced in ILC design.As the tracking signal of many continuous iterations is lost in a certain interval,the feedback control part can employ the tracking signal of current iteration for compensation.Under the assumption that the initial state vibrates around the desired initial state uniformly in mathematical expectation sense,the expectation of ILC tracking error can converge to zero as the number of iteration tends to infinity.Under the circumstance that the initial state varies around the desired initial state with a bound,as the number of iteration tends to infinity,the expectation of ILC tracking error can be driven to a bounded range,whose upper bound is proportional to the fluctuation.It is revealed that the convergence condition is dependent on the feed-forward control gains,while the feedback control can accelerate convergence speed by selecting appropriate feedback control gains.As a special case,the controlled system with integrated high relative degree is also addressed by proposing a simplified iteration dependent interval based open‐closed‐loop ILC method.Finally,the effectiveness of the developed iteration dependent interval based open‐closed‐loop ILC is illustrated by a simulation example with two cases on initial state. 展开更多
关键词 intelligent control iterative methods
下载PDF
An Iterative Method for Split Variational Inclusion Problem and Split Fixed Point Problem for Averaged Mappings
14
作者 Kaiwen Wang Yali Zhao Ziru Zhao 《Journal of Applied Mathematics and Physics》 2023年第6期1541-1556,共16页
In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged ... In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged mapping in real Hilbert spaces. Further, we prove that the sequences generated by the proposed iterative method converge strongly to a common solution of split variational inclusion problem and split fixed point problem for averaged mappings which is also the unique solution of the variational inequality problem. The results presented here improve and extend the corresponding results in this area. 展开更多
关键词 Split Variational Inclusion Problem Split Fixed Point Problem iterative Algorithm Averaged Mapping CONVERGENCE
下载PDF
A Fixed-Point Iterative Method for Discrete Tomography Reconstruction Based on Intelligent Optimization
15
作者 Luyao Yang Hao Chen +2 位作者 Haocheng Yu Jin Qiu Shuxian Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期731-745,共15页
Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iter... Discrete Tomography(DT)is a technology that uses image projection to reconstruct images.Its reconstruction problem,especially the binary image(0–1matrix)has attracted strong attention.In this study,a fixed point iterative method of integer programming based on intelligent optimization is proposed to optimize the reconstructedmodel.The solution process can be divided into two procedures.First,the DT problem is reformulated into a polyhedron judgment problembased on lattice basis reduction.Second,the fixed-point iterativemethod of Dang and Ye is used to judge whether an integer point exists in the polyhedron of the previous program.All the programs involved in this study are written in MATLAB.The final experimental data show that this method is obviously better than the branch and bound method in terms of computational efficiency,especially in the case of high dimension.The branch and bound method requires more branch operations and takes a long time.It also needs to store a large number of leaf node boundaries and the corresponding consumptionmatrix,which occupies a largememory space. 展开更多
关键词 Discrete tomography integer programming fixed-point iterative algorithm intelligent optimization lattice basis reduction
下载PDF
Fundamental Trackability Problems for Iterative Learning Control
16
作者 Deyuan Meng Jingyao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期1933-1950,共18页
Generally, the classic iterative learning control(ILC)methods focus on finding design conditions for repetitive systems to achieve the perfect tracking of any specified trajectory,whereas they ignore a fundamental pro... Generally, the classic iterative learning control(ILC)methods focus on finding design conditions for repetitive systems to achieve the perfect tracking of any specified trajectory,whereas they ignore a fundamental problem of ILC: whether the specified trajectory is trackable, or equivalently, whether there exist some inputs for the repetitive systems under consideration to generate the specified trajectory? The current paper contributes to dealing with this problem. Not only is a concept of trackability introduced formally for any specified trajectory in ILC, but also some related trackability criteria are established. Further, the relation between the trackability and the perfect tracking tasks for ILC is bridged, based on which a new convergence analysis approach is developed for ILC by leveraging properties of a functional Cauchy sequence(FCS). Simulation examples are given to verify the effectiveness of the presented trackability criteria and FCS-induced convergence analysis method for ILC. 展开更多
关键词 CONVERGENCE functional Cauchy sequence(FCS) iterative learning control(ILC) trackability
下载PDF
Nonlinear Algebraic Equations Solved by an Optimal Splitting-Linearizing Iterative Method
17
作者 Chein-Shan Liu Essam REl-Zahar Yung-Wei Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1111-1130,共20页
How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linea... How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM). 展开更多
关键词 Nonlinear algebraic equations novel splitting-linearizing technique iterative method maximal projection optimal splitting parameter
下载PDF
Low-complexity iterative equalization for OTFS based on alternating minimization
18
作者 HE Xin JIA Haoxiang +2 位作者 SUN Yutong ZHOU Zijian ZHAO Danfeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期851-860,共10页
To achieve robust communication in high mobility scenarios,an iterative equalization algorithm based on alternating minimization(AM)is proposed for the orthogonal time frequency space(OTFS)system.The algorithm approxi... To achieve robust communication in high mobility scenarios,an iterative equalization algorithm based on alternating minimization(AM)is proposed for the orthogonal time frequency space(OTFS)system.The algorithm approximates the equalization problem to a convex function optimization problem in the real-valued domain and solves the problem iteratively using the AM algorithm.In the iterative process,the complexity of the proposed algorithm is reduced further based on the study of the cyclic structure and sparse property of the OTFS channel matrix in the delay-Doppler(DD)domain.The new method for OTFS is simulated and verified in a high-speed mobile scenario and the results show that the proposed equalization algorithm has excellent bit error rate performance with low complexity. 展开更多
关键词 orthogonal time frequency space(OTFS) alternating minimization(AM) high-speed mobile scenario iterative equalization
下载PDF
Parallel Iterative FEM Solver with Initial Guess for Frequency Domain Electromagnetic Analysis
19
作者 Woochan Lee Woobin Park +2 位作者 Jaeyoung Park Young-Joon Kim Moonseong Kim 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1585-1602,共18页
The finite element method is a key player in computational electromag-netics for designing RF(Radio Frequency)components such as waveguides.The frequency-domain analysis is fundamental to identify the characteristics ... The finite element method is a key player in computational electromag-netics for designing RF(Radio Frequency)components such as waveguides.The frequency-domain analysis is fundamental to identify the characteristics of the components.For the conventional frequency-domain electromagnetic analysis using FEM(Finite Element Method),the system matrix is complex-numbered as well as indefinite.The iterative solvers can be faster than the direct solver when the solver convergence is guaranteed and done in a few steps.However,such complex-numbered and indefinite systems are hard to exploit the merit of the iterative solver.It is also hard to benefit from matrix factorization techniques due to varying system matrix parts according to frequency.Overall,it is hard to adopt conventional iterative solvers even though the system matrix is sparse.A new parallel iterative FEM solver for frequency domain analysis is implemented for inhomogeneous waveguide structures in this paper.In this implementation,the previous solution of the iterative solver of Matlab(Matrix Laboratory)employ-ing the preconditioner is used for the initial guess for the next step’s solution process.The overlapped parallel stage using Matlab’s Parallel Computing Toolbox is also proposed to alleviate the cold starting,which ruins the convergence of early steps in each parallel stage.Numerical experiments based on waveguide structures have demonstrated the accuracy and efficiency of the proposed scheme. 展开更多
关键词 Computational electromagnetics numerical simulation finite element method parallel processing iterative solvers
下载PDF
Improvement of iterative closest point with edges of projected image
20
作者 Chen WANG 《Virtual Reality & Intelligent Hardware》 2023年第3期279-291,共13页
Background There are many regularly shaped objects in artificial environments.It is difficult to distinguish the poses of these objects when only geometric information is used.With the development of sensor technologi... Background There are many regularly shaped objects in artificial environments.It is difficult to distinguish the poses of these objects when only geometric information is used.With the development of sensor technologies,inclusion of other information can be used to solve this problem.Methods We propose an algorithm to register point clouds by integrating color information.The key idea of the algorithm is to jointly optimize the dense and edge terms.The dense term was built in a manner similar to that of the iterative closest point algorithm.To build the edge term,we extracted the edges of the images obtained by projecting point clouds.The edge term prevents the point clouds from sliding during registration.We used this loosely coupled method to fuse geometric and color information.Results The results of the experiments showed that the edge image approach improves precision,and the algorithm is robust. 展开更多
关键词 Point cloud REGISTRATION iterative closest point
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部