期刊文献+
共找到311篇文章
< 1 2 16 >
每页显示 20 50 100
Robust Principal Component Analysis Integrating Sparse and Low-Rank Priors
1
作者 Wei Zhai Fanlong Zhang 《Journal of Computer and Communications》 2024年第4期1-13,共13页
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal... Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements. 展开更多
关键词 robust principal component analysis Sparse Matrix Low-Rank Matrix Hyperspectral Image
下载PDF
Continuous Iteratively Reweighted Least Squares Algorithm for Solving Linear Models by Convex Relaxation
2
作者 Xian Luo Wanzhou Ye 《Advances in Pure Mathematics》 2019年第6期523-533,共11页
In this paper, we present continuous iteratively reweighted least squares algorithm (CIRLS) for solving the linear models problem by convex relaxation, and prove the convergence of this algorithm. Under some condition... In this paper, we present continuous iteratively reweighted least squares algorithm (CIRLS) for solving the linear models problem by convex relaxation, and prove the convergence of this algorithm. Under some conditions, we give an error bound for the algorithm. In addition, the numerical result shows the efficiency of the algorithm. 展开更多
关键词 Linear Models CONTINUOUS iteratively reweighted Least SQUARES CONVEX RELAXATION principal component analysis
下载PDF
Multivariate Statistical Process Monitoring Using Robust Nonlinear Principal Component Analysis 被引量:6
3
作者 赵仕健 徐用懋 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第5期582-586,共5页
The principal component analysis (PCA) algorithm is widely applied in a diverse range of fields for performance assessment, fault detection, and diagnosis. However, in the presence of noise and gross errors, the non... The principal component analysis (PCA) algorithm is widely applied in a diverse range of fields for performance assessment, fault detection, and diagnosis. However, in the presence of noise and gross errors, the nonlinear PCA (NLPCA) using autoassociative bottle-neck neural networks is so sensitive that the obtained model differs significantly from the underlying system. In this paper, a robust version of NLPCA is introduced by replacing the generally used error criterion mean squared error with a mean log squared error. This is followed by a concise analysis of the corresponding training method. A novel multivariate statistical process monitoring (MSPM) scheme incorporating the proposed robust NLPCA technique is then investigated and its efficiency is assessed through application to an industrial fluidized catalytic cracking plant. The results demonstrate that, compared with NLPCA, the proposed approach can effectively reduce the number of false alarms and is, hence, expected to better monitor real-world processes. 展开更多
关键词 robust nonlinear principal component analysis autoassociative networks multivariate statisticaprocess monitoring (MSPM) fluidized catalytic cracking unit (FCCU)
原文传递
A Robust Statistical Batch Process Monitoring Framework and Its Application 被引量:4
4
作者 谢磊 张建明 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期682-687,共6页
In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to laten... In order to reduce the variations of the product quality in batch processes, multivariate statistical process control methods according to multi-way principal component analysis (MPCA) or multi-way projection to latent structure (MPLS) were proposed for on-line batch process monitoring. However, they are based on the decomposition of relative covariance matrix and strongly affected by outlying observations. In this paper, in view of an efficient projection pursuit algorithm, a robust statistical batch process monitoring (RSBPM) framework,which is resistant to outliers, is proposed to reduce the high demand for modeling data. The construction of robust normal operating condition model and robust control limits are discussed in detail. It is evaluated on monitoring an industrial streptomycin fermentation process and compared with the conventional MPCA. The results show that the RSBPM framework is resistant to possible outliers and the robustness is confirmed. 展开更多
关键词 robust statistical batch process monitoring robust principal componentanalysis streptomycin fermentation robust multi-way principal component analysis
下载PDF
Robust Recommendation Algorithm Based on Kernel Principal Component Analysis and Fuzzy C-means Clustering 被引量:2
5
作者 YI Huawei NIU Zaiseng +2 位作者 ZHANG Fuzhi LI Xiaohui WANG Yajun 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第2期111-119,共9页
The existing recommendation algorithms have lower robustness in facing of shilling attacks. Considering this problem, we present a robust recommendation algorithm based on kernel principal component analysis and fuzzy... The existing recommendation algorithms have lower robustness in facing of shilling attacks. Considering this problem, we present a robust recommendation algorithm based on kernel principal component analysis and fuzzy c-means clustering. Firstly, we use kernel principal component analysis method to reduce the dimensionality of the original rating matrix, which can extract the effective features of users and items. Then, according to the dimension-reduced rating matrix and the high correlation characteristic between attack profiles, we use fuzzy c-means clustering method to cluster user profiles, which can realize the effective separation of genuine profiles and attack profiles. Finally, we construct an indicator function based on the attack detection results to decrease the influence of attack profiles on the recommendation, and incorporate it into the matrix factorization technology to design the corresponding robust recommendation algorithm. Experiment results indicate that the proposed algorithm is superior to the existing methods in both recommendation accuracy and robustness. 展开更多
关键词 robust recommendation shilling attacks matrixfactorization kernel principal component analysis fuzzy c-meansclustering
原文传递
A new image processing method for discriminating internal layers from radio echo sounding data of ice sheets via a combined robust principal component analysis and total variation approach 被引量:2
6
作者 LANG ShiNan ZHAO Bo +1 位作者 LIU XiaoJun FANG GuangYou 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第4期838-846,共9页
Discriminating internal layers by radio echo sounding is important in analyzing the thickness and ice deposits in the Antarctic ice sheet.The signal processing method of synthesis aperture radar(SAR)has been widely us... Discriminating internal layers by radio echo sounding is important in analyzing the thickness and ice deposits in the Antarctic ice sheet.The signal processing method of synthesis aperture radar(SAR)has been widely used for improving the signal to noise ratio(SNR)and discriminating internal layers by radio echo sounding data of ice sheets.This method is not efficient when we use edge detection operators to obtain accurate information of the layers,especially the ice-bed interface.This paper presents a new image processing method via a combined robust principal component analysis-total variation(RPCA-TV)approach for discriminating internal layers of ice sheets by radio echo sounding data.The RPCA-based method is adopted to project the high-dimensional observations to low-dimensional subspace structure to accelerate the operation of the TV-based method,which is used to discriminate the internal layers.The efficiency of the presented method has been tested on simulation data and the dataset of the Institute of Electronics,Chinese Academy of Sciences,collected during CHINARE 28.The results show that the new method is more efficient than the previous method in discriminating internal layers of ice sheets by radio echo sounding data. 展开更多
关键词 robust principal component analysis (RPCA) total variation (TV) discriminating internal layers from radio echo sounding data of ice sheets conjugate gradient method
原文传递
Robust Principal Component Analysis via Truncated Nuclear Norm Minimization
7
作者 张艳 郭继昌 +1 位作者 赵洁 王博 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第5期576-583,共8页
Robust principal component analysis(PCA) is widely used in many applications, such as image processing, data mining and bioinformatics. The existing methods for solving the robust PCA are mostly based on nuclear norm ... Robust principal component analysis(PCA) is widely used in many applications, such as image processing, data mining and bioinformatics. The existing methods for solving the robust PCA are mostly based on nuclear norm minimization. Those methods simultaneously minimize all the singular values, and thus the rank cannot be well approximated in practice. We extend the idea of truncated nuclear norm regularization(TNNR) to the robust PCA and consider truncated nuclear norm minimization(TNNM) instead of nuclear norm minimization(NNM). This method only minimizes the smallest N-r singular values to preserve the low-rank components, where N is the number of singular values and r is the matrix rank. Moreover, we propose an effective way to determine r via the shrinkage operator. Then we develop an effective iterative algorithm based on the alternating direction method to solve this optimization problem. Experimental results demonstrate the efficiency and accuracy of the TNNM method. Moreover, this method is much more robust in terms of the rank of the reconstructed matrix and the sparsity of the error. 展开更多
关键词 truncated nuclear norm minimization(TNNM) robust principal component analysis(PCA) lowrank alternating direction method
原文传递
Applications of gauge duality in robust principal component analysis and semidefinite programming
8
作者 MA ShiQian YANG JunFeng 《Science China Mathematics》 SCIE CSCD 2016年第8期1579-1592,共14页
Gauge duality theory was originated by Preund (1987), and was recently further investigated by Friedlander et al. (2014). When solving some matrix optimization problems via gauge dual, one is usually able to avoid... Gauge duality theory was originated by Preund (1987), and was recently further investigated by Friedlander et al. (2014). When solving some matrix optimization problems via gauge dual, one is usually able to avoid full matrix decompositions such as singular value and/or eigenvalue decompositions. In such an approach, a gauge dual problem is solved in the first stage, and then an optimal solution to the primal problem can be recovered from the dual optimal solution obtained in the first stage. Recently, this theory has been applied to a class of semidefinite programming (SDP) problems with promising numerical results by Friedlander and Mac^to (2016). We establish some theoretical results on applying the gauge duality theory to robust principal component analysis (PCA) and general SDP. For each problem, we present its gauge dual problem, characterize the optimality conditions for the primal-dual gauge pair, and validate a way to recover a primal optimal solution from a dual one. These results are extensions of Friedlander and Macedo (2016) from nuclear norm regularization to robust PCA and from a special class of SDP which requires the coefficient matrix in the linear objective to be positive definite to SDP problems without this restriction. Our results provide further understanding in the potential advantages and disadvantages of the gauge duality theory. 展开更多
关键词 gauge optimization gauge duality polar function antipolar set singular value decomposition robust principal component analysis semidefinite programming
原文传递
基于主成分分析和VU分解法的两步随机相移算法
9
作者 张宇 《红外与激光工程》 EI CSCD 北大核心 2024年第2期227-237,共11页
为了平衡相位计算的精度和速度,大量的两步随机相移算法发展起来。提出了一种基于主成分分析和VU分解法的快速、高精度两步随机相移算法。首先,采用两步主成分分析法对经过滤波的两幅相移干涉图进行计算求出迭代初始相位;然后,利用没有... 为了平衡相位计算的精度和速度,大量的两步随机相移算法发展起来。提出了一种基于主成分分析和VU分解法的快速、高精度两步随机相移算法。首先,采用两步主成分分析法对经过滤波的两幅相移干涉图进行计算求出迭代初始相位;然后,利用没有滤波的两幅相移干涉图进行VU分解、迭代求出最终相位。通过模拟和实验结果对比表明:与四种性能良好的两步随机相移算法相比,对于不同的条纹类型、噪声、相移值及条纹数量,提出的算法综合性能最好,其精度最高,有效相移范围和有效条纹数量范围最大,当干涉图像素数为401 pixel×401 pixel时,提出的算法仅比格兰-施密特正交化法和两步主成分分析法多花费0.035 s。在理想情况下,提出的算法可以得到完全正确的结果。如果需要得到较高精度,最好能够提前抑制噪声,同时设置相移值远离0和π,条纹数量大于2。主成分分析和VU分解法无需滤波,花费近似非迭代算法的时间获得迭代算法的精度,其打破了迭代算法花费时间较多的限制,适合高精度光学在线检测,有广泛的发展前景。 展开更多
关键词 测量 干涉 相移算法 迭代算法 主成分分析
下载PDF
基于鲁棒性主成分分析的低照度图像增强算法 被引量:2
10
作者 胡乘其 王书朋 王瑜婧 《计算机应用与软件》 北大核心 2024年第2期244-249,共6页
由于低照度图像对比度和信噪比低,传统图像增强算法在提高图像对比度的同时容易造成噪声放大。针对该问题,提出基于鲁棒性主成分分析(RPCA)的低照度图像增强算法。算法依据Retinex理论将图像分解为照度分量和反射分量,使用伽马矫正对照... 由于低照度图像对比度和信噪比低,传统图像增强算法在提高图像对比度的同时容易造成噪声放大。针对该问题,提出基于鲁棒性主成分分析(RPCA)的低照度图像增强算法。算法依据Retinex理论将图像分解为照度分量和反射分量,使用伽马矫正对照度分量进行增强。将增强后的照度分量与反射分量合成为最终的增强图像。其中图像分解采用RPCA方法实现,因为该方法可以有效地将照度信息与噪声分离,从而避免增强照度分量时放大噪声。为了提高计算效率,算法采用非精确增广拉格朗日乘子法(Inexect-ALM,IALM)求解RPCA分解问题。实验结果表明,该算法在增强图像对比度的同时避免了放大噪声,其主观评价与客观指标都优于几种经典的图像增强算法,有较好的视觉效果和较低的计算复杂度。 展开更多
关键词 图像增强 低照度图像 RETINEX理论 鲁棒性主成分分析
下载PDF
基于BP-PCA-WCA-SVM的混凝土大坝变形预测方法 被引量:1
11
作者 朱小韦 袁占良 李宏超 《长江科学院院报》 CSCD 北大核心 2024年第9期138-145,共8页
传统基于单一模型的混凝土大坝变形预测方法预测精度低,噪声稳健性差,泛化能力弱。为解决该问题,提出一种基于贝塔先验主成分分析(BP-PCA)与水循环算法(WCA)优化支撑向量机(SVM)相结合的混凝土大坝变形组合预测方法。首先利用所提BP-PC... 传统基于单一模型的混凝土大坝变形预测方法预测精度低,噪声稳健性差,泛化能力弱。为解决该问题,提出一种基于贝塔先验主成分分析(BP-PCA)与水循环算法(WCA)优化支撑向量机(SVM)相结合的混凝土大坝变形组合预测方法。首先利用所提BP-PCA模型对变形数据进行多尺度降噪分解,将复杂非线性、非平稳随机过程分解为一系列结构简单的主分量;然后利用WCA优化的SVM(WCA-SVM)对每个主分量分别建立预测模型;最后将多个主分量的预测结果综合叠加得到最终预测结果。以我国中部地区某混凝土大坝变形监测数据开展试验,结果表明,所提BP-PCA模型能够有效挖掘数据中隐含的趋势性和规律性信息,BP-PCA-WCA-SVM模型能够获得较高的预测精度,预测结果的相对误差为1.07%,误差均方根为0.065。相对于Kalman滤液、SVM、CNN 3种方法,所提模型预测性能提升均超过62%,并且具有更强的噪声稳健性和泛化能力。 展开更多
关键词 混凝土大坝 变形预测 主成分分析 水循环算法 噪声稳健性
下载PDF
基于结构相似度和鲁棒主成分分析的运动目标检测 被引量:1
12
作者 杜延墨 沈三民 张炳玮 《激光杂志》 CAS 北大核心 2024年第2期54-57,共4页
运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(r... 运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(robust principal component analysis,RPCA)的运动目标检测方法。此方法综合考虑图像的亮度、对比度和结构三种特性,不采用传统的背景减除法,而是把图像像素点的结构相似度作为度量来实现运动对象与背景的分离。实验结果表明,此方法准确率可达0.95,且F度量较传统运动目标检测算法平均提升0.15,总体上比传统方法更具优势。 展开更多
关键词 运动目标检测 背景恢复 鲁棒主成分分析 结构相似度
下载PDF
基于深度子空间学习的焊缝缺陷检测方法
13
作者 李进军 王肖锋 葛为民 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期90-102,共13页
主成分分析网络(PCANet)是一个基于简化的卷积神经网络的深度子空间学习模型。针对PCANet算法应用于焊缝缺陷检测时无法体现数据完整结构信息、对噪声较敏感等问题,在PCANet的基础上提出一种鲁棒非贪婪双向二维PCANet(RNG-BDPCANet)焊... 主成分分析网络(PCANet)是一个基于简化的卷积神经网络的深度子空间学习模型。针对PCANet算法应用于焊缝缺陷检测时无法体现数据完整结构信息、对噪声较敏感等问题,在PCANet的基础上提出一种鲁棒非贪婪双向二维PCANet(RNG-BDPCANet)焊缝缺陷在线检测方法。RNG-BDPCANet在范数距离度量标准下,利用双向二维主成分分析作卷积核,并采用非贪婪策略得到目标函数最优的整体投影矩阵,对离群值具有较强的鲁棒性。最后,在自建的焊缝人工数据集、ORL和Yale B人脸数据集上分别进行实验。结果表明,所提出的算法在分类性能方面得到显著提高,具有较强的鲁棒性能。 展开更多
关键词 焊缝缺陷 主成分分析网络 深度学习 二维主成分分析 鲁棒性 范数
下载PDF
青海省马铃薯品种(系)用于油炸薯条加工的适宜性及品质分析
14
作者 张青青 邝吉卫 +1 位作者 党斌 杨希娟 《粮油食品科技》 CAS CSCD 北大核心 2024年第4期152-160,共9页
为分析青海省不同品种(系)的马铃薯在油炸薯条品质上的差异,筛选出适宜用于加工油炸薯条的马铃薯品种(系),通过选取21个具有代表性的马铃薯品种(系)作为原料,进行油炸薯条加工,对其基础营养指标和品质特性进行评估,结合主成分分析、相... 为分析青海省不同品种(系)的马铃薯在油炸薯条品质上的差异,筛选出适宜用于加工油炸薯条的马铃薯品种(系),通过选取21个具有代表性的马铃薯品种(系)作为原料,进行油炸薯条加工,对其基础营养指标和品质特性进行评估,结合主成分分析、相关性分析和迭代聚类对油炸薯条进行加工适宜性评价。结果表明:青海省不同品种(系)的马铃薯在营养指标上存在显著差异。主成分分析获得了5个主成分,累计方差贡献率达到86.43%。通过迭代聚类的综合得分筛选出适宜加工油炸薯条的马铃薯品种(系)分别为青薯15号、青薯14号和青11-2-9。对其食用品质进行分析发现,油炸薯条口感外酥里嫩(感官评分为62~73分),咀嚼性良好(52~53分),色泽明亮(a^(*)值为4.0~6.5),评价结果与实际应用现状相符。有助于青海省马铃薯加工的高效利用,满足消费需求,为马铃薯品质改良和专用品种选育提供理论依据。 展开更多
关键词 油炸马铃薯条 适宜性研究 品质评价 主成分分析 迭代聚类
下载PDF
双灵活度量自适应加权2DPCA在水下光学图像识别中的应用
15
作者 毕鹏飞 胡志远 +1 位作者 陈璇 杜雪 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第11期4188-4197,共10页
受观测条件和采集场景等因素影响,水下光学图像通常呈现出高维小样本特性且易伴随着噪声信息干扰,导致许多降维方法对其识别过程中的鲁棒表现力不足。为解决上述问题,该文提出一种新颖的双灵活度量自适应加权2维主成分分析方法(DFMAW-2D... 受观测条件和采集场景等因素影响,水下光学图像通常呈现出高维小样本特性且易伴随着噪声信息干扰,导致许多降维方法对其识别过程中的鲁棒表现力不足。为解决上述问题,该文提出一种新颖的双灵活度量自适应加权2维主成分分析方法(DFMAW-2DPCA)应用于水下图像识别。该方法不仅在建立重构误差和方差之间双层关系中同时使用了灵活的鲁棒距离度量机制,而且能够根据每个样本实际状态自适应学习到与之相匹配的权重,有效增强了模型在水下噪声干扰环境下的鲁棒性并实现识别精度的提升。与此同时,该文设计了一个快速非贪婪算法用于最优解的获取,其具有良好的收敛性。通过3个水下图像数据库中进行大量实验的结果表明,DFMAW-2DPCA在同类方法中具有更为杰出的整体性能。 展开更多
关键词 模式识别 鲁棒距离度量 自适应加权 水下光学图像 2维主成分分析
下载PDF
基于注意力机制堆叠LSTM的多传感器信息融合刀具磨损预测
16
作者 成佳闻 赛希亚拉图 +1 位作者 张超勇 罗敏 《工业工程》 2024年第3期64-77,86,共15页
刀具磨损是影响数控机床加工质量和加工效率的重要因素之一。针对现有铣刀磨损预测中信号单一和预测精度不足的问题,提出了一种基于注意力机制的堆叠LSTM (long short-term memory,长短期记忆网络)的多传感器信息融合刀具磨损预测方法... 刀具磨损是影响数控机床加工质量和加工效率的重要因素之一。针对现有铣刀磨损预测中信号单一和预测精度不足的问题,提出了一种基于注意力机制的堆叠LSTM (long short-term memory,长短期记忆网络)的多传感器信息融合刀具磨损预测方法。对多传感器信号进行预处理,然后提取多域特征,利用核主成分分析法对其进行特征级信息融合,得到后续网络的输入。采用基于注意力机制的堆叠LSTM网络模型,使得网络能够自适应地学习数据的重要信息,在PHM2010的数据集上预测精度达到99.9%。通过与其他算法的对比试验和加入人工噪声的方法,验证了本文所提出的模型的高精度和鲁棒性。 展开更多
关键词 刀具磨损 核主成分分析(KPCA) 信息融合 注意力机制 鲁棒性
下载PDF
面向复杂场景的多通道慢速动目标稳健检测算法
17
作者 刘昆 贺雄鹏 +2 位作者 廖桂生 余悦 王麒凯 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2018-2027,共10页
针对鲁棒主成分分析(RPCA)算法在多通道慢速地面动目标指示(GMTI)中存在的高虚警以及对通道误差敏感问题,该文提出一种数据重构与速度合成孔径雷达(VSAR)-RPCA联合处理的方法。首先,通过样本挑选与联合像素法完成通道间数据精确重构;然... 针对鲁棒主成分分析(RPCA)算法在多通道慢速地面动目标指示(GMTI)中存在的高虚警以及对通道误差敏感问题,该文提出一种数据重构与速度合成孔径雷达(VSAR)-RPCA联合处理的方法。首先,通过样本挑选与联合像素法完成通道间数据精确重构;然后结合VSAR检测模式提出一种新的RPCA优化模型,通过采用交替投影乘子法对其进行求解得到空间频域的稀疏矩阵,进一步利用动目标与强杂波残余在空间频域通道的分布特性差异实现强杂波残余剔除与动目标检测;最后采用沿航迹干涉算法估计目标径向速度完成动目标重定位。相较于传统RPCA算法,所提算法在非理想强杂波背景下的虚警率显著降低。理论分析与实测实验验证了所提算法的有效性。 展开更多
关键词 合成孔径雷达 地面动目标检测 鲁棒主成分分析 数据重构
下载PDF
基于l^(1/2)-TV正则化RPCA的运动目标检测
18
作者 赵俊豪 蒋峥 +1 位作者 刘斌 张玲 《计算机仿真》 2024年第5期258-263,428,共7页
针对复杂环境下背景干扰导致运动目标检测精度下降的问题,提出了一种基于l^(1/2)-TV正则化RPCA的运动目标检测方法。方法利用核范数来描述背景的低秩特性,采用l^(1/2)范数描述更稀疏的运动目标,以抑制运动目标中的背景干扰。同时结合TV... 针对复杂环境下背景干扰导致运动目标检测精度下降的问题,提出了一种基于l^(1/2)-TV正则化RPCA的运动目标检测方法。方法利用核范数来描述背景的低秩特性,采用l^(1/2)范数描述更稀疏的运动目标,以抑制运动目标中的背景干扰。同时结合TV正则化约束运动目标的空间连续性,使运动目标更加完整。利用Frobenius范数检测背景干扰。采用交替方向最小化策略扩展的增广拉格朗日乘子法求解所提出的约束最小化问题。实验结果表明,所提方法能有效去除背景干扰,提高运动目标的检测精度、改善视觉效果。 展开更多
关键词 运动目标检测 复杂环境 鲁棒主成分分析 全变分
下载PDF
基于主成分特征向量的点云配准方法
19
作者 赵夫群 黄鹤 耿国华 《应用科学学报》 CAS CSCD 北大核心 2024年第6期962-976,共15页
已有点云配准算法对杂乱点云的配准精度较低,耗时较长,为此提出一种基于主成分特征向量的点云配准方法。首先,通过描述点云曲率变化情况提取点云特征点集,并利用重心法使参考点云与待配准点云的特征点集的重心重合,实现初始位姿确定,达... 已有点云配准算法对杂乱点云的配准精度较低,耗时较长,为此提出一种基于主成分特征向量的点云配准方法。首先,通过描述点云曲率变化情况提取点云特征点集,并利用重心法使参考点云与待配准点云的特征点集的重心重合,实现初始位姿确定,达到点云粗配准的目的;然后,在迭代最近点算法进行迭代时,利用主成分分析算法对特征点集进行主成分分析,选取前三个主成分特征向量,通过刚体变换进行对应匹配,再利用欧氏距离寻找最近点,实现点云精配准。采用公共点云和文物点云数据模型对所提的配准方法进行验证,结果表明该方法比已有方法的配准精度平均提高了约12%,配准耗时平均降低了约10%,具有良好的配准结果。表明该基于主成分特征向量的配准方法是一种有效的点云配准方法。 展开更多
关键词 点云配准 曲率 迭代最近点 主成分分析 特征向量
下载PDF
基于RPCA的激光点云道路标牌几何信息提取方法
20
作者 柯昀皓 黄玉春 吴梓健 《交通信息与安全》 CSCD 北大核心 2024年第2期76-86,共11页
道路标牌的位置、尺寸等几何参数普查是交通资产管理、无人驾驶等应用的关键环节。车载激光扫描三维点云中路牌不仅占比小,而且受周围树木干扰大,导致边缘点云缺失且包含大量噪声。为了准确提取点云中标牌杆和平面的位置和几何信息,提... 道路标牌的位置、尺寸等几何参数普查是交通资产管理、无人驾驶等应用的关键环节。车载激光扫描三维点云中路牌不仅占比小,而且受周围树木干扰大,导致边缘点云缺失且包含大量噪声。为了准确提取点云中标牌杆和平面的位置和几何信息,提出了两阶段杆状物点云分割方法,由粗及细提取出标牌杆及其相连的标牌平面点云簇;进而通过鲁棒主成分分析(robust principal component analysis,RPCA)排除标牌周围噪声和杂点干扰,结合点云簇形态分析得到独立的主杆体和标牌平面2个部件;再引入环状域生长拟合圆柱体,法向量投影采样与定向包围盒(oriented bounding box,OBB)紧致拟合标牌平面,分别得到主杆体和标牌的准确几何信息。实验采集了湖北省武汉市洪山区、高新区和武昌区34个不同路口下的激光点云数据,在KPConv点云分割网络下进行训练与验证,准确率达到90.31%,标牌精确度达到91.07%,召回率达到了92.74%;并对上述数据中的20个路口的98个道路标牌进行几何信息提取,有效提取率达到89.80%,位置精度达到0.0621 m,几何误差达到8.07%。实验表明:该方法能有效排除点云噪声和杂点干扰,实现对点云缺失在20%以内的标牌的有效提取。 展开更多
关键词 智能交通 道路标牌 几何信息提取 鲁棒主成分分析
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部