In this paper a simplified computation method of natural frequency of jacket platforms is given. Shear, bending and rotary inertia effects are considered in the equation, while the jacket shape, rotary inertia and cen...In this paper a simplified computation method of natural frequency of jacket platforms is given. Shear, bending and rotary inertia effects are considered in the equation, while the jacket shape, rotary inertia and centralized mass of the platform top are all determined by using a coefficient-revising method.展开更多
In this paper a nonlinear response of a fixed offshore platform under the combined forces of waves, wind and sea currents is presented. Wave force acting on the elements is calculated using Morison equation. Hydrodyna...In this paper a nonlinear response of a fixed offshore platform under the combined forces of waves, wind and sea currents is presented. Wave force acting on the elements is calculated using Morison equation. Hydrodynamic loads on horizontal and vertical tubular members and the dynamic response of offshore fixed platform coupled with distribution of displacement, axial force, and bending moment along the base of the platform for regular and severe cases have been investigated. The structure must be able maintain production in a one-year wave return period condition and also to be able to continue with one hundred-year storm return period. The results of this study show that bending moment values with a one-year wave return period condition for the base platform and junction of platform to deck are 70 percent and 59 percent, respectively more than bending moment with a one-year wave return period. The direction of wave and wind hit has significant effects on the shift platform response, also nonlinear response is important for the safe design and operation of offshore structures.展开更多
In this paper, the jacket platform is simulated by a non-uniform cantilever beam subjected to axial force. Based on the Hamilton theory, the equation of bending motion is developed and solved by the classical Ritz met...In this paper, the jacket platform is simulated by a non-uniform cantilever beam subjected to axial force. Based on the Hamilton theory, the equation of bending motion is developed and solved by the classical Ritz method combined with the pseudo-excitation method for random responses with non-classical damping. Usually, random responses of this continuous structure are obtained by orthogonality of modes, and some normal modes of the structure are needed, causing inconvenience for the analysis of the non-uniform beam whose normal modes are not easy to be obtained. However, if the pseudo-excitation method is extended to calculate random responses by combining it with the classical Ritz method, the responses of a non-uniform beam, such as auto-PSD function, cross-PSD and higher spectral moments, can be solved directly avoiding the calculation of normal modes. The numerical results show that the present method is effective and useful in aseismic design of platforms.展开更多
研究了大型导管架平台卧式建造时出现单边约束圆管的风致涡激振动问题。将建造过程中单边约束的导管架圆管简化成悬臂梁模型,采用van der Pol尾流振子模型模拟圆管受到的流体力,建立了圆管风致涡激振动动力学方程。使用伽辽金方法对建...研究了大型导管架平台卧式建造时出现单边约束圆管的风致涡激振动问题。将建造过程中单边约束的导管架圆管简化成悬臂梁模型,采用van der Pol尾流振子模型模拟圆管受到的流体力,建立了圆管风致涡激振动动力学方程。使用伽辽金方法对建立的运动方程进行求解,数值分析了圆管在特定约化风速下的涡激振动特性。在圆管上附加非线性能量阱(NES)作为被动减振装置对圆管进行减振,并采用粒子群优化算法对NES的非线性刚度和阻尼参数进行了优化。结果表明,在约化速度为4.8时,得到的NES优化的非线性刚度和阻尼参数组合可以有效减小悬臂梁自由端风致涡激振动位移。本研究说明采用NES和粒子群优化算法可以有效减小圆管的风致涡激振动,为导管架安全建造提供一定的参考。展开更多
基金The project is supported by the National Natural Science Foundation of China
文摘In this paper a simplified computation method of natural frequency of jacket platforms is given. Shear, bending and rotary inertia effects are considered in the equation, while the jacket shape, rotary inertia and centralized mass of the platform top are all determined by using a coefficient-revising method.
文摘In this paper a nonlinear response of a fixed offshore platform under the combined forces of waves, wind and sea currents is presented. Wave force acting on the elements is calculated using Morison equation. Hydrodynamic loads on horizontal and vertical tubular members and the dynamic response of offshore fixed platform coupled with distribution of displacement, axial force, and bending moment along the base of the platform for regular and severe cases have been investigated. The structure must be able maintain production in a one-year wave return period condition and also to be able to continue with one hundred-year storm return period. The results of this study show that bending moment values with a one-year wave return period condition for the base platform and junction of platform to deck are 70 percent and 59 percent, respectively more than bending moment with a one-year wave return period. The direction of wave and wind hit has significant effects on the shift platform response, also nonlinear response is important for the safe design and operation of offshore structures.
文摘In this paper, the jacket platform is simulated by a non-uniform cantilever beam subjected to axial force. Based on the Hamilton theory, the equation of bending motion is developed and solved by the classical Ritz method combined with the pseudo-excitation method for random responses with non-classical damping. Usually, random responses of this continuous structure are obtained by orthogonality of modes, and some normal modes of the structure are needed, causing inconvenience for the analysis of the non-uniform beam whose normal modes are not easy to be obtained. However, if the pseudo-excitation method is extended to calculate random responses by combining it with the classical Ritz method, the responses of a non-uniform beam, such as auto-PSD function, cross-PSD and higher spectral moments, can be solved directly avoiding the calculation of normal modes. The numerical results show that the present method is effective and useful in aseismic design of platforms.
文摘研究了大型导管架平台卧式建造时出现单边约束圆管的风致涡激振动问题。将建造过程中单边约束的导管架圆管简化成悬臂梁模型,采用van der Pol尾流振子模型模拟圆管受到的流体力,建立了圆管风致涡激振动动力学方程。使用伽辽金方法对建立的运动方程进行求解,数值分析了圆管在特定约化风速下的涡激振动特性。在圆管上附加非线性能量阱(NES)作为被动减振装置对圆管进行减振,并采用粒子群优化算法对NES的非线性刚度和阻尼参数进行了优化。结果表明,在约化速度为4.8时,得到的NES优化的非线性刚度和阻尼参数组合可以有效减小悬臂梁自由端风致涡激振动位移。本研究说明采用NES和粒子群优化算法可以有效减小圆管的风致涡激振动,为导管架安全建造提供一定的参考。