is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t k...is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t know the matrix T<sub>1,n</sub>,but weknow all eigenvalues of matrix T<sub>1,k-1</sub>,all eigenvalues of matrix T<sub>k+1,k</sub>,and all eigenvaluesof matrix T<sub>1,n</sub> could we construct the matrix T<sub>1,n</sub>.Let μ<sub>1</sub>,μ<sub>2</sub>,…,μ<sub>k-1</sub>,μ<sub>k</sub>,μ<sub>k+1</sub>,…,μ<sub>n-1</sub>,展开更多
This paper is concerlled with the investigation of a twrvparametric linear stationary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for solving linear systems Ax = b, where A is a nonsingular con...This paper is concerlled with the investigation of a twrvparametric linear stationary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for solving linear systems Ax = b, where A is a nonsingular consistently ordered 2-cyclic matrix. We give sufficient and necessary conditions for strong convergence of the MEJ method and we determine the optimum extrapolation parameters and the optimum spectral radius of it, in the case where all the efornvalues of the block Jacobi iteration matrir associated with A are real. In the last section, we compare the MEJ with other known methods.展开更多
基金Project 19771020 supported by National Science Foundation of China
文摘is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t know the matrix T<sub>1,n</sub>,but weknow all eigenvalues of matrix T<sub>1,k-1</sub>,all eigenvalues of matrix T<sub>k+1,k</sub>,and all eigenvaluesof matrix T<sub>1,n</sub> could we construct the matrix T<sub>1,n</sub>.Let μ<sub>1</sub>,μ<sub>2</sub>,…,μ<sub>k-1</sub>,μ<sub>k</sub>,μ<sub>k+1</sub>,…,μ<sub>n-1</sub>,
文摘This paper is concerlled with the investigation of a twrvparametric linear stationary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for solving linear systems Ax = b, where A is a nonsingular consistently ordered 2-cyclic matrix. We give sufficient and necessary conditions for strong convergence of the MEJ method and we determine the optimum extrapolation parameters and the optimum spectral radius of it, in the case where all the efornvalues of the block Jacobi iteration matrir associated with A are real. In the last section, we compare the MEJ with other known methods.