期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES
1
作者 Jiang Erxiong(Dept.of Math.,shanghai University,Shanghai 200436,PRC) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2000年第S1期3-4,共2页
is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t k... is gained by deleting the k<sup>th</sup> row and the k<sup>th</sup> column (k=1,2,...,n) from T<sub>n</sub>.We put for-ward an inverse eigenvalue problem to be that:If we don’t know the matrix T<sub>1,n</sub>,but weknow all eigenvalues of matrix T<sub>1,k-1</sub>,all eigenvalues of matrix T<sub>k+1,k</sub>,and all eigenvaluesof matrix T<sub>1,n</sub> could we construct the matrix T<sub>1,n</sub>.Let μ<sub>1</sub>,μ<sub>2</sub>,…,μ<sub>k-1</sub>,μ<sub>k</sub>,μ<sub>k+1</sub>,…,μ<sub>n-1</sub>, 展开更多
关键词 In AN INVERSE EIGENVALUE PROBLEM FOR jacobi matrices MATH
下载PDF
Anderson Localization for Jacobi Matrices Associated with High-Dimensional Skew Shifts
2
作者 Jia SHI Xiaoping YUAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2020年第4期495-510,共16页
In this paper,the authors establish Anderson localization for a class of Jacobi matrices associated with skew shifts on Td,d≥3.
关键词 Anderson localization jacobi matrices Skew shifts
原文传递
OPTIMUM MODIFIED EXTRAPOLATED JACOBI METHOD FOR CONSISTENTLY ORDERED MATRICES
3
作者 A.K. Yeyios A. Psimarni(Department of Mathematics, University of Ioannina, Greece) 《Journal of Computational Mathematics》 SCIE CSCD 1994年第3期203-212,共10页
This paper is concerlled with the investigation of a twrvparametric linear stationary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for solving linear systems Ax = b, where A is a nonsingular con... This paper is concerlled with the investigation of a twrvparametric linear stationary iterative method, called Modified Extrapolated Jacobi (MEJ) method, for solving linear systems Ax = b, where A is a nonsingular consistently ordered 2-cyclic matrix. We give sufficient and necessary conditions for strong convergence of the MEJ method and we determine the optimum extrapolation parameters and the optimum spectral radius of it, in the case where all the efornvalues of the block Jacobi iteration matrir associated with A are real. In the last section, we compare the MEJ with other known methods. 展开更多
关键词 EGS SOR OPTIMUM MODIFIED EXTRAPOLATED jacobi METHOD FOR CONSISTENTLY ORDERED matrices MATH MS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部