期刊文献+
共找到635篇文章
< 1 2 32 >
每页显示 20 50 100
High-temperature stress suppresses allene oxide cyclase 2 and causes male sterility in cotton by disrupting jasmonic acid signaling 被引量:1
1
作者 Aamir Hamid Khan Yizan Ma +9 位作者 Yuanlong Wu Adnan Akbar Muhammad Shaban Abid Ullah Jinwu Deng Abdul Saboor Khan Huabin Chi Longfu Zhu Xianlong Zhang Ling Min 《The Crop Journal》 SCIE CSCD 2023年第1期33-45,共13页
Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causi... Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causing male sterility in the cotton HT-sensitive line H05. Anther sterility was reversed by exogenous application of methyl jasmonate(MeJA) to early buds. To elucidate the role of GhAOC2 in JA biosynthesis and identify its putative contribution to the anther response to HT, we created gene knockout cotton plants using the CRISPR/Cas9 system. Ghaoc2 mutant lines showed male-sterile flowers with reduced JA content in the anthers at the tetrad stage(TS), tapetum degradation stage(TDS), and anther dehiscence stage(ADS). Exogenous application of MeJA to early mutant buds(containing TS or TDS anthers) rescued the sterile pollen and indehiscent anther phenotypes, while ROS signals were reduced in ADS anthers. We propose that HT downregulates the expression of GhAOC2 in anthers, reducing JA biosynthesis and causing excessive ROS accumulation in anthers, leading to male sterility. These findings suggest exogenous JA application as a strategy for increasing male fertility in cotton under HT. 展开更多
关键词 Cotton(Gossypium hirsutum) jasmonic acid Allene oxide cyclase 2 ROS CRISPR/Cas9 High-temperature stress
下载PDF
Jasmonic acid-mediated stress responses share the molecular mechanism underlying male sterility induced by deficiency of ZmMs33 in maize
2
作者 Ziwen Li Shuangshuang Liu +7 位作者 Taotao Zhu Jing Wang Meng Sun Xueli An Xun Wei Cuimei Liu Jinfang Chu Xiangyuan Wan 《The Crop Journal》 SCIE CSCD 2023年第4期1115-1127,共13页
Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and devel... Plant male reproduction is a fine-tuned developmental process that is susceptible to stressful environments and influences crop grain yields.Phytohormone signaling functions in control of plant normal growth and development as well as in response to external stresses,but the interaction or crosstalk among phytohormone signaling,stress response,and male reproduction in plants remains poorly understood.Cross-species comparison among 514 stress-response transcriptomic libraries revealed that ms33-6038,a genic male sterile mutant deficient in the Zm Ms33/Zm GPAT6 gene,displayed an excessive drought stress-like transcriptional reprogramming in anthers triggered mainly by disturbed jasmonic acid(JA)homeostasis.An increased level of JA appeared in Zm Ms33-deficient anthers at both meiotic and postmeiotic stages and activated genes involved in JA biosynthesis and signaling as well as genes functioning in JA-mediated drought response.Excessive accumulation of JA elevated expression level of a gene encoding a WRKY transcription factor that activated the Zm Ms33 promoter.These findings reveal a feedback loop of Zm Ms33-JA-WRKY-Zm Ms33 in controlling male sterility and JA-mediated stress response in maize,shedding light on the crosstalk of stress response and male sterility mediated by phytohormone homeostasis and signaling. 展开更多
关键词 ZmMs33/ZmGPAT6 jasmonic acid Phytohormone homeostasis Male sterility Stress response
下载PDF
Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat 被引量:7
3
作者 Xiao Wang Qing Li +5 位作者 Jingjing Xie Mei Huang Jian Cai Qin Zhou Tingbo Dai Dong Jiang 《The Crop Journal》 SCIE CSCD 2021年第1期120-132,共13页
Drought stress is a limiting factor for wheat production and food security.Drought priming has been shown to increase drought tolerance in wheat.However,the underlying mechanisms are unknown.In the present study,the g... Drought stress is a limiting factor for wheat production and food security.Drought priming has been shown to increase drought tolerance in wheat.However,the underlying mechanisms are unknown.In the present study,the genes encoding the biosynthesis and metabolism of abscisic acid(ABA)and jasmonic acid(JA),as well as genes involved in the ABA and JA signaling pathways were up-regulated by drought priming.Endogenous concentrations of JA and ABA increased following drought priming.The interplay between JA and ABA in plant responses to drought priming was further investigated using inhibitors of ABA and JA biosynthesis.Application of fluridone(FLU)or nordihydroguaiaretic acid(NDGA)to primed plants resulted in lower chlorophyll-fluorescence parameters and activities of superoxide dismutase and glutathione reductase,and higher cell membrane damage,compared to primed plants(PD)under drought stress.NDGA+ABA,but not FLU+JA,restored priming-induced tolerance,as indicated by a finding of no significant difference from PD under drought stress.Under drought priming,NDGA induced the suppression of ABA accumulation,while FLU did not affect JA accumulation.These results were consistent with the expression of genes involved in the biosynthesis of ABA and JA.They suggest that ABA and JA are required for priming-induced drought tolerance in wheat,with JA acting upstream of ABA. 展开更多
关键词 WHEAT Drought priming Abscisic acid jasmonic acid Antioxidant activity
下载PDF
Effect of Jasmonic Acid on Photosynthetic Pigments and Stress Markers in <i>Cajanus cajan</i>(L.) Millsp. Seedlings under Copper Stress 被引量:3
4
作者 Sharma Poonam Harpreet Kaur Sirhindi Geetika 《American Journal of Plant Sciences》 2013年第4期817-823,共7页
Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transducti... Jasmonates are class of plant growth regulators act as signal molecule that intercede various components in physiological and metabolic regulation, stress responses and possibly communication through signal transduction. Oxidative stress due to heavy metal exposure stimulates synthesis and activity of antioxidant metabolites and enhances antioxidant enzyme activities that could protect plant tissues. The aim of this study was to investigate the exogenous effect of JA at seed level which can transduce throughout seedling growth and regulate antioxidant activities such as superoxide dismutase (SOD;EC 1.15.1.1) and guaiacol peroxidase (POD;EC 1.11.1.7) in 12 days old seedlings of pigeon pea (Cajanus cajan (L.) Millsp.) in presence and/or absence of copper. The activity of SOD and POD increased significantly in presence of Cu2+ after seed priming with JA. JA also helps in chlorophyll and carotenoid accumulation and neutralizes the toxic effect of Cu2+ on seedlings. This is the first report of JA effect on photosynthetic pigment accumulation and H2O2 mitigating enzymes i.e. SOD and POD and it could be recommended that seed priming with JA help in ameliorating toxic effect of Cu2+. 展开更多
关键词 jasmonic acid Copper Sulphate Lipid PEROXIDATION Superoxide DISMUTASE GUAIACOL PEROXIDASE Total Chlorophyll Carotenoids
下载PDF
Role of the Arabidopsis thafiana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses 被引量:61
5
作者 Qingyun Bu Hongling Jiang +6 位作者 Chang-Bao Li Qingzhe Zhai Jie Zhang Xiaoyan Wu Jiaqiang Sun Qi Xie Chuanyou Li 《Cell Research》 SCIE CAS CSCD 2008年第7期756-767,共12页
Jasmonic 酸(JA ) 是对草食动物攻击,病原体感染并且机械伤害调整植物防卫回答的重要植物激素。在这份报告,我们提供了生物化学、基因的证据证明 Arabidopsis thaliana NAC 家庭蛋白质 ANAC019 和 ANAC055 可能作为抄写使活跃之物工... Jasmonic 酸(JA ) 是对草食动物攻击,病原体感染并且机械伤害调整植物防卫回答的重要植物激素。在这份报告,我们提供了生物化学、基因的证据证明 Arabidopsis thaliana NAC 家庭蛋白质 ANAC019 和 ANAC055 可能作为抄写使活跃之物工作调整辩护基因的导致 JA 的表示。在 JA 发信号的二 NAC 基因的角色与 anac019 anac055 被检验两倍异种并且与转基因的植物 overexpressing ANAC019 或 ANAC055。两倍变异的植物显示出的 anac019 anac055 稀释了导致 JA 的植物的存储 PROTEIN1 (VSP1 ) 和 LIPOXYGENASE2 (LOX2 ) 表示,而二 NAC 基因显示出的转基因的植物 overexpressing 提高了导致 JA 的 VSP1 和 LOX2 表示。二 NAC 基因的 导致JA 的表示取决于 COI1 和 AtMYC2 的功能和发现 ANAC019 的那 overexpression 部分救了 atmyc2-2 异种的JA相关的显型,带了我们到二 NAC 蛋白质 AtMYC2 下游地扮演调整 发信号JA 的防卫回答的一个假设。证实这个想法的进一步的证据来自观察到 necrotrophic 真菌的两倍异种高显示出的 anac019 anac055 的反应类似到 atmyc2-2 异种的。 展开更多
关键词 ANAC019 ANAC055 转录因子 防御反应
下载PDF
The laccase gene Gh Lac1 modulates fiber initiation and elongation by coordinating jasmonic acid and flavonoid metabolism 被引量:1
6
作者 Qin Hu Shenghua Xiao +4 位作者 Qianqian Guan Lili Tu Feng Sheng Xuezhu Du Xianlong Zhang 《The Crop Journal》 SCIE CAS CSCD 2020年第4期522-533,共12页
Cotton fibers are single cells originating in the epidermis of cotton ovules,and serve as the largest natural fiber source for the textile industry.In theory,all epidermal cells have the potential to develop into fibe... Cotton fibers are single cells originating in the epidermis of cotton ovules,and serve as the largest natural fiber source for the textile industry.In theory,all epidermal cells have the potential to develop into fibers,but only 15%–25%of epidermis cells develop into commercially viable lint fibers.We previously showed that Gh Lac1 participates in cotton defense against biotic stress.Here we report that Gh Lac1 also has a role in cotton fiber development.Gh Lac1 RNAi lines in cotton showed increased differentiation of fiber initials from epidermis and shortened fiber length,resulting in unchanged lint percentage.Suppression of Gh Lac1 expression led to constitutively hyperaccumulated jasmonic acid(JA)and flavonoids in ovules and fiber cells.In vitro ovule culture experiments confirmed the distinct roles of JA and flavonoids in fiber initiation and elongation,and showed that fiber development is spatially regulated by these chemicals:the increased fiber initiation in Gh Lac1 RNAi lines is caused by hyperaccumulated JA and rutin content during the fiber initiation stage and shortened fiber length is caused by constitutively increased JA and naringenin content during the fiber elongation stage. 展开更多
关键词 COTTON GhLac1 Fiber development jasmonic acid FLAVONOIDS
下载PDF
JA-mediated MYC2/LOX/AOS feedback loop regulates osmotic stress response in tea plant
7
作者 Junyan Zhu Hongrong Chen +5 位作者 Lu Liu Xiaobo Xia Xiaomei Yan Xiaozeng Mi Shengrui Liu Chaoling Wei 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期931-946,共16页
Osmotic stress caused by low-temperature,drought and salinity was a prevalent abiotic stress in plant that severely inhibited plant development and agricultural yield,particularly in tea plant.Jasmonic acid(JA)is an i... Osmotic stress caused by low-temperature,drought and salinity was a prevalent abiotic stress in plant that severely inhibited plant development and agricultural yield,particularly in tea plant.Jasmonic acid(JA)is an important phytohormone involving in plant stress.However,underlying molecular mechanisms of JA modulated osmotic stress response remains unclear.In this study,high concentration of mannitol induced JA accumulation and increase of peroxidase activity in tea plant.Integrated transcriptome mined a JA signaling master,MYC2 transcription factor is shown as a hub regulator that induced by mannitol,expression of which positively correlated with JA biosynthetic genes(LOX and AOS)and peroxidase genes(PER).CsMYC2 was determined as a nuclei-localized transcription activator,furthermore,ProteinDNA interaction analysis indicated that CsMYC2 was positive regulator that activated the transcription of CsLOX7,CsAOS2,CsPER1 and CsPER3via bound with their promoters,respectively.Suppression of CsMYC2 expression resulted in a reduced JA content and peroxidase activity and osmotic stress tolerance of tea plant.Overexpression of CsMYC2 in Arabidopsis improved JA content,peroxidase activity and plants tolerance against mannitol stress.Together,we proposed a positive feedback loop mediated by CsMYC2,CsLOX7 and CsAOS2 which constituted to increase the tolerance of osmotic stress through fine-tuning the accumulation of JA levels and increase of POD activity in tea plant. 展开更多
关键词 Camellia sinensis jasmonic acid(ja) MYC2 transcription factor Lipoxygenase(LOX) Osmotic stress Peroxidase(POD) Reactive oxygen species(ROS)
下载PDF
番茄SlJAZ7的抗病功能及与SlTGA7的互作
8
作者 林晨俞 郭鑫 +5 位作者 王文娟 翟敏 曹颖杰 王梦月 赵平娟 于晓惠 《华南农业大学学报》 CAS CSCD 北大核心 2024年第4期525-534,共10页
[目的]细菌性斑点病是导致番茄Solanum lycopersicum减产的主要因素之一,丁香假单胞菌(Pseudomonas syringae pv. tomato DC3000,Pst DC3000)是细菌性斑点病的致病因子之一。瞬时沉默番茄JAZ7基因导致其对Pst DC3000的敏感性增加,然而,... [目的]细菌性斑点病是导致番茄Solanum lycopersicum减产的主要因素之一,丁香假单胞菌(Pseudomonas syringae pv. tomato DC3000,Pst DC3000)是细菌性斑点病的致病因子之一。瞬时沉默番茄JAZ7基因导致其对Pst DC3000的敏感性增加,然而,验证JAZ7基因抗细菌性斑点病的直接证据及其作用机理的报道较少。本研究从番茄叶片中克隆得到SlJAZ7基因,创制稳定遗传的过表达SlJAZ7的转基因番茄,分析其抗病功能和机理,研究其在转录水平和蛋白水平上与抗病性密切相关的SlTGA7的关系,为有效防治细菌性斑点病提供理论基础。[方法]通过野生型和转基因番茄接种Pst DC3000的表型差异分析,鉴定SlJAZ7基因的抗病功能。使用RT-qPCR分析SlJAZ7和SlTGA7基因在Pst DC3000、茉莉酸甲酯(Methyl jasmonate,MeJA)和水杨酸(Salicylic acid,SA)处理下的表达模式和组织特异性。利用烟草瞬时表达的方法研究SIJAZ7和SlTGA7蛋白的亚细胞定位。利用酵母双杂交(Y2H)试验、双分子荧光互补(BiFC)试验和蛋白下拉(pull down)试验研究SlJAZ7蛋白与SlTGA7蛋白的互作关系,验证SlJAZ7的抗病功能和可能的抗病机理。[结果]过表达SlJAZ7基因的转基因番茄叶片在Pst DC3000处理时受到的过氧化损伤较野生型更少,转基因株系中SlTGA7表达量升高,SlJAZ7基因在营养器官中高表达,且受到Pst DC3000诱导,响应MeJA、SA处理,SlTGA7基因在同样的处理下呈相反的变化趋势。SlJAZ7和SlTGA7蛋白均定位于细胞核。Y2H、BiFC和pull down试验同时证明SlJAZ7蛋白和SlTGA7蛋白存在互作关系。[结论]过表达SlJAZ7基因有利于减少活性氧积累,提高番茄抗病性,同时SlJAZ7在转录水平正调控SlTGA7基因表达。SlJAZ7与SlTGA7存在互作,推测SIJAZ7基因可能通过提高Pst DC3000病原菌侵染时SITGA7基因的表达量,启动SITGA7下游抗病基因的表达来提高转基因番茄的抗病性,也可能通过与SITGA7蛋白结合,影响其调控MYC等转录因子的活性。这为进一步研究SlJAZ7的作用机制奠定了基础。 展开更多
关键词 番茄 SljaZ7 蛋白互作 抗病性 茉莉酸甲酯 水杨酸
下载PDF
Overexpression of auxin/indole-3-acetic acid gene MdIAA24 enhances Glomerella leaf spot resistance in apple(Malus domestica)
9
作者 Qian Wang Dong Huang +2 位作者 Wenyan Tu Fengwang Ma Changhai Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期15-24,共10页
Auxin is throughout the entire life process of plants and is involved in the crosstalk with other hormones,yet its role in apple disease resistance remains unclear.In this study,we investigated the function of auxin/i... Auxin is throughout the entire life process of plants and is involved in the crosstalk with other hormones,yet its role in apple disease resistance remains unclear.In this study,we investigated the function of auxin/indole-3-acetic acid(IAA)gene Md IAA24 overexpression in enhancing apple resistance to Glomerella leaf spot(GLS)caused by Colletotrichum fructicola(Cf).Analysis revealed that,upon Cf infection,35S::Md IAA24 plants exhibited enhanced superoxide dismutase(SOD)and peroxidase(POD)activity,as well as a greater amount of glutathione(reduced form)and ascorbic acid accumulation,resulting in less H_(2)O_(2)and superoxide anion(O_(2)^(-))in apple leaves.Furthermore,35S::Md IAA24 plants produced more protocatechuic acid,proanthocyanidins B1,proanthocyanidins B2 and chlorogenic acid when infected with Cf.Following Cf infection,35S::Md IAA24 plants presented lower levels of IAA and jasmonic acid(JA),but higher levels of salicylic acid(SA),along with the expression of related genes.The overexpression of Md IAA24 was observed to enhance the activity of chitinase andβ-1,3-glucanase in Cfinfected leaves.The results indicated the ability of Md IAA24 to regulate the crosstalk between IAA,JA and SA,and to improve reactive oxygen species(ROS)scavenging and defense-related enzymes activity.This jointly contributed to GLS resistance in apple. 展开更多
关键词 APPLE MdIAA24 Glomerella leaf spot(GLS) Antioxidant capacity AUXIN Salicylic acid jasmonic acid
下载PDF
R2R3-type Lo MYB21 affects jasmonate-regulated development and dehiscence of anthers in lily(Lilium oriental hybrids)
10
作者 Zheng Tong Tingting Dong +3 位作者 Qiuhua Li Rui Wang Junna He Bo Hong 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期239-251,共13页
Lilies are widely cultivated for cut flowers,but their large anthers carry a considerable amount of colored pollen that is dispersed easily.Studying the molecular mechanism of anther development and dehiscence could h... Lilies are widely cultivated for cut flowers,but their large anthers carry a considerable amount of colored pollen that is dispersed easily.Studying the molecular mechanism of anther development and dehiscence could help solve this problem.LoMYB21,encoding a putative R2R3v-myb avian myeloblastosis viral oncogene homolog(MYB)transcription factor,was identified from oriental lilies(Lilium‘Siberia’).Real-time quantitative PCR analysis showed that LoMYB21 was mainly expressed in the anther,filament and stigma and had high expression during the late stages of lily anther development.LoMYB21 had transactivation activity and was located in the nucleus through yeast one-hybrid assays and transient expression in Nicotiana benthamiana.Suppression of LoMYB21 by virus-induced gene silencing(VIGS)in Lilium‘Siberia’led to anther indehiscence and reduced the expression of genes related to Jasmonate acid(JA)biosynthesis and signal transduction.Induction of LoMYB21 in DEX::LoMYB21 transgenic Arabidopsis caused procumbent inflorescences that became infertile,accompanied by higher expression of JA biosynthetic and signaling genes.These results demonstrated that JA content and signaling were abnormal in silenced lily and transgenic LoMYB21 Arabidopsis,which affected anther development.Our study indicated that LoMYB21 could regulate lily anther dehiscence through JA biosynthesis and signaling during the late stages of anther development. 展开更多
关键词 LILIUM LoMYB21 Anther dehiscence jasmonate acid
下载PDF
Effects of Exogenous Jasmonic Acid on Concentrations of Direct-Defense Chemicals and Expression of Related Genes in Bt (Bacillus thuringiensis) Corn (Zea mays)
11
作者 FENG Yuan-jiao WANG Jian-wu LUO Shi-ming 《Agricultural Sciences in China》 CAS CSCD 2007年第12期1456-1462,共7页
Bt corn is one of the top three large-scale commercialized transgenic crops around the world. It is increasingly clear that the complementary durable approaches for pest control, which combine the endogenous defense o... Bt corn is one of the top three large-scale commercialized transgenic crops around the world. It is increasingly clear that the complementary durable approaches for pest control, which combine the endogenous defense of the crop with the introduced foreign genes, are promising alternative strategies for pest resistance management and the next generation of insect-resistant transgenic crops. In the present study, we tested the inducible effects of exogenous jasmonic acid (JA) on direct-defense chemical content, Bt protein concentration, and related gene expression in the leaves of Bt corn cultivar 34B24 and non-Bt cultivar 34B23 by chemical analysis, ELISA, and RT-PCR. The results show that the expression of LOX, PR-2a, MPI, and PR-I genes in the treated leaf (the first leaf) was promoted by exogenous JA both in 34B24 and 34B23. As compared with the control, the concentration of DIMBOA in the treated leaf was significantly increased by 63 and 18% for 34B24 and 34B23, respectively. The total phenolic acid was also increased by 24 and 12% for both 34B24 and 34B23. The Bt protein content of 34B24 in the treated leaf was increased by 13% but decreased significantly by 27% in the second leaf. The induced response of 34B24 was in a systemic way and was much stronger than that of 34B23. Those findings indicated that there is a synergistic interaction between Bt gene and internally induced chemical defense system triggered by externally applied JA in Bt corn. 展开更多
关键词 Bt corn jasmonic acid ja defense chemicals defense genes
下载PDF
Extracellular and Intracellular Calcium both Involved in the Jasmonic Acid Induced Calcium Mobilization in Arabidopsis thaliana
12
作者 SUN Qing-peng YU Yong-kun +2 位作者 WAN Shan-xia ZHAO Fu-kuan HAO Yu-lan 《Agricultural Sciences in China》 CAS CSCD 2010年第4期497-503,共7页
The objective of this experiment is to evaluate the role of intracellular and extracellular Ca2+ and calmodulin (CAM) in jasmonic acid (JA) signaling. The laser scanning microscopy was used to detect the changes ... The objective of this experiment is to evaluate the role of intracellular and extracellular Ca2+ and calmodulin (CAM) in jasmonic acid (JA) signaling. The laser scanning microscopy was used to detect the changes of [Ca2+]cyt of Arabidopsis thaliana leaf cells which pretreated with different types of calcium channel blocker. Moreover, the expression of VSP, one of JA response genes, was also investigated after pretreated with the above blocker and antagonist of CaM. The results showed that extracellular and intracellular calcium both involved in the JA-induced Ca2+ mobilization, and then Ca2+ exerted its functions through activating the CaM or CaM related proteins. The apoplast calcium influx and the calcium release from the calcium stores are both involved in the JA-induced calcium mobilization, then the JA-induced Ca2+ transmited the JA signal through CaM or CaM related proteins, and regulated the JA responsive genes. 展开更多
关键词 Arabidopsis thaliana Ca2+ jasmonic acid CAM
下载PDF
Effects of Wounding and Exogenous Jasmonic Acid on the Peroxidation of Membrane Lipid in Pea Seedlings Leaves
13
作者 LIU Yan HAO Yan-yan +1 位作者 LIU Yan-yan HUANG Wei-dong 《Agricultural Sciences in China》 CAS CSCD 2005年第8期614-620,共7页
The changes of malondialdehyde (MDA), H2O2, and O2^7 content, or the activities of superoxide dismutase (SOD), catalase (CAT), ascrobate peroxidase (APX), peroxidase (POD), phenylalanine ammonia lyase (PAL... The changes of malondialdehyde (MDA), H2O2, and O2^7 content, or the activities of superoxide dismutase (SOD), catalase (CAT), ascrobate peroxidase (APX), peroxidase (POD), phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) in pea seedlings (Pisum sativum L.) under wounding and treatment of exogenous jasmonic acid (JA) were investigated. The results showed that the activities of both phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) were significantly increased by wounding and application of JA. The metabolism of reaction oxidative species (ROS) was enhanced, especially O2^7 and H2O2 appeared to rapidly increase. The activities of antioxidant enzymes such as SOD, CAT, APX and POD were also increased. Treatment of JA of 1 or 10 μmol L^-1 could effectively induce plant defense response, and thus decrease the peroxidation of cell membrane lipid. However, high concentration of JA (100 μmol L^-1) resulted in unbalance of metabolism of ROS and promoted the peroxidation of cell membrane lipid. We thus suggested that JA, under the suitable concentration, could induce defense response of pea seedlings to wounding. 展开更多
关键词 Pisum sativum L. WOUNDING jasmonic acid Peroxidation of membrane lipid Defense response
下载PDF
Changes in the Production of Salicylic and Jasmonic Acid in Potato Plants (<i>Solanum tuberosum</i>) as Response to Foliar Application of Biotic and Abiotic Inductors
14
作者 Esmeralda González-Gallegos Elan Laredo-Alcalá +2 位作者 Juan Ascacio-Valdés Diana Jasso de Rodríguez Francisco Daniel Hernández-Castillo 《American Journal of Plant Sciences》 2015年第11期1785-1791,共7页
An alternative to the use of chemical fungicides is to enhance the defensive response of plants by appropriate stimulation, a phenomenon known as induction of resistance. The aim of this study was to determine the cha... An alternative to the use of chemical fungicides is to enhance the defensive response of plants by appropriate stimulation, a phenomenon known as induction of resistance. The aim of this study was to determine the changes of endogen levels of salicylic acid (SA) and jasmonic acid (JA) in potato plants as response to foliar application of biotic and abiotic inductors. Treatments T1 = Best Ultra F (Bacillus spp. 108 cfu/mL and Pseudomonas fluorescens 108 cfu/mL) 0.5%, T2 = FullKover HF (microbial jasmonic acid 1500 ppm) 0.2%, T3 = T1 0.5% + T2 0.1%, T4 = Milor&reg (Chlorothalonil + Metalaxyl) 0.5% and T5 = control (water) were applied in potato plants. The application of biotic and abiotic inductors improved the SA and JA production in potato plants. The production of salicylic acid in potato plants was observed by application of Bacillus spp. and Pseudomonas fluorescens (T1) and fungicide Milor&reg (T4). The application of T1 Best Ultra F, T2 FullKover HF (microbial JA), T3 (T1 + T2) and T4 Milor&reg improved the JA production in potato plants. 展开更多
关键词 Salicylic acid jasmonic acid Bacillus spp. Pseudomonas FLUORESCENS
下载PDF
The Role of Jasmonates as Antibulbing Substances in the Bulb Formation of Onion
15
作者 Noboru Takada Atsushi Saito +4 位作者 Yuuki Matsuzuka Tatsushi Mochiduki Eriko Wakita Meng WANG Yasunori Koda 《Agricultural Biotechnology》 2024年第1期1-4,8,共5页
Onion plants form spherical bulbs under long-day conditions.Substances regulating bulb formation remain unknown.In the course of chemical studies on the bulb formation,α-linolenic acid was isolated from onion extract... Onion plants form spherical bulbs under long-day conditions.Substances regulating bulb formation remain unknown.In the course of chemical studies on the bulb formation,α-linolenic acid was isolated from onion extracts as an antibulbing substance,the amount of which was synchronized with the bulb formation.Since allene oxide synthase inhibitor canceled the antibulbing activity ofα-linolenic acid,it was disclosed that jasmonic acid concerns this regulation.Structure-activity-relationship study revealed that its(3R,7S)stereochemistry is necessary for showing its antibulbing activity.It is concluded that(3R,7S)-jasmonate derived fromα-linolenic acid actually participates in the regulation of bulb formation. 展开更多
关键词 Onion(Allim cepa L.cv.Higuma) ISOLATION Bulb formation Antibulbing substance α-Linolenic acid Methyl jasmonate
下载PDF
Trade-offs between the accumulation of cuticular wax and jasmonic acid-mediated herbivory resistance in maize
16
作者 Jiong Liu Lu Li +12 位作者 Zhilong Xiong Christelle AMRobert Baozhu Li Shan He Wenjie Chen Jiasheng Bi Guanqing Zhai Siyi Guo Hui Zhang Jieping Li Shutang Zhou Xi Zhang Chun‐Peng Song 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第1期143-159,共17页
Plants have evolved complex physical and chemical defense systems that allow them to withstand herbivory infestation.Composed of a complex mixture of very-long-chain fatty acids(VLCFAs)and their derivatives,cuticular ... Plants have evolved complex physical and chemical defense systems that allow them to withstand herbivory infestation.Composed of a complex mixture of very-long-chain fatty acids(VLCFAs)and their derivatives,cuticular wax constitutes the first physical line of defense against herbivores.Here,we report the function of Glossy 8(ZmGL8),which encodes a 3-ketoacyl reductase belonging to the fatty acid elongase complex,in orchestrating wax production and jasmonic acid(JA)-mediated defenses against herbivores in maize(Zea mays).The mutation of GL8 enhanced chemical defenses by activating the JA-dependent pathway.We observed a trade-off between wax accumulation and JA levels across maize glossy mutants and 24 globally collected maize inbred lines.In addition,we demonstrated that mutants defective in cuticular wax biosynthesis in Arabidopsis thaliana and maize exhibit enhanced chemical defenses.Comprehensive transcriptomic and lipidomic analyses indicated that the gl8 mutant confers chemical resistance to herbivores by remodeling VLCFA-related lipid metabolism and subsequent JA biosynthesis and signaling.These results suggest that VLCFA-related lipid metabolism has a critical role in regulating the trade-offs between cuticular wax and JA-mediated chemical defenses. 展开更多
关键词 cuticular wax fall armyworm herbivore resistance jasmonic acid MAIZE plant-herbivore interactions
原文传递
MdbHLH162 connects the gibberellin and jasmonic acid signals to regulate anthocyanin biosynthesis in apple
17
作者 Jian-Ping An Rui-Rui Xu +3 位作者 Xiao-Na Wang Xiao-Wei Zhang Chun-Xiang You Yuepeng Han 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第2期265-284,共20页
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals.The positive regulators of anthocyanin biosynthesis have been reported,whereas the anthocyanin repressors have been neg... Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals.The positive regulators of anthocyanin biosynthesis have been reported,whereas the anthocyanin repressors have been neglected.Although the signal transduction pathways of gibberellin(GA)and jasmonic acid(JA)and their regulation of anthocyanin biosynthesis have been investigated,the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated.In this study,we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals.MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33,which are two recognized positive regulators of anthocyanin biosynthesis.MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33.The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex.The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex.Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis.This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals. 展开更多
关键词 anthocyanin biosynthesis bHLH transcription factor GIBBERELLIN jasmonic acid regulatory network transcriptional regulation
原文传递
Response of Endogenous Salicylic Acid and Jasmonates to Mechanical Wounding in Pea Leaves 被引量:5
18
作者 LIU Yan PAN Qiu-hong +2 位作者 ZHAN Ji-cheng TIAN Rong-rong HUANG Wei-dong 《Agricultural Sciences in China》 CAS CSCD 2008年第5期622-629,共8页
The roles of on endogenous jasmonates (JAs) and salicylic acid (SA) in wounding response were investigated. Pea (Pisum sativum L.) seedlings were treated with three different methods including mechanical woundin... The roles of on endogenous jasmonates (JAs) and salicylic acid (SA) in wounding response were investigated. Pea (Pisum sativum L.) seedlings were treated with three different methods including mechanical wounding, JAs application, and SA application. The contents of endogenous JAs and SA, as well as the activities of the related enzymes were detected by enzyme-linked immunosorbent assay (ELISA), high performance liquid chromatography (HPLC), and spectrophotometer, respectively. The results showed that endogenous JA rapidly accumulated within 30 min after wounding. The increase in the activities of both lipoxygenase (LOX) and allene oxide synthase (AOS) lagged behind JAs burst. A second slight increase in JAs level was observed at 24 h after wounding treatment, and at the same time point, higher activities of LOX and AOS were also detected. Endogenous free SA content decreased accompanied with JAs burst. Effects of exogenous JA application were similar to those of wounding treatment on endogenous SA level and phenylalanine ammonia lyase (PAL) activity, whereas exogenous SA application led to the significant inhibition of LOX and AOS activities and the decrease of endogenous JAs level at the early stage of treatment. It is thus suggested that JAs burst and SA decrease in early response to wounding may constitute an important mechanism by which plant starts the related defense reaction and adapts to wounding stress. 展开更多
关键词 salicylic acid jaSMONATES mechanical wounding pea (Pisum sativum L.)
下载PDF
Regulatory effect of salicylic acid and methyl jasmonate supplementation on ergosterol production in Hericium erinaceus mycelia 被引量:6
19
作者 Xiaodong Dai Yaguang Zhan +6 位作者 Jiechi Zhang Piqi Zhang Zenghua Han Qingfang Ma Xianghui Kong Jianing Liu Yinpeng Ma 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第1期71-77,共7页
We evaluated the biomass and ergosterol content of Hericium erinaceus mycelium, and extracellular enzyme activities in H. erinaceus liquid culture following salicylic acid(SA) and methyl jasmonic acid(Me JA)supple... We evaluated the biomass and ergosterol content of Hericium erinaceus mycelium, and extracellular enzyme activities in H. erinaceus liquid culture following salicylic acid(SA) and methyl jasmonic acid(Me JA)supplementation. The optimal SA concentration was100 lmoláL-1, where the highest ergosterol content of 2.33 mgág-1was obtained following 6-day cultivation with100 lmoláL-1SA supplementation, and which was significantly higher than the unsupplemented control(p / 0.01). Following 4-day supplementation with50 lmoláL-1Me JA, the highest ergosterol content obtained was 1.988 mgág-1, which was 25.8 % higher than the unsupplemented control. Our data indicate that SA and Me JA supplementation improves ergosterol content in H.erinaceus mycelium. 展开更多
关键词 Hericium erinaceus Ergosterol Salicylic acid Methyl jasmonate Inducers
下载PDF
番茄SlJAZ11的表达分析及互作蛋白的筛选与验证 被引量:2
20
作者 高苗苗 郭鑫 +5 位作者 朱寿松 黄思源 李建君 庞春娜 陈银华 于晓惠 《核农学报》 CAS CSCD 北大核心 2023年第3期483-494,共12页
茉莉酸(JA)参与调节植物生长、发育和防御等多种重要生物过程,其中JAZ蛋白作为抑制子,在茉莉酸介导的生物和非生物胁迫响应过程中起到重要作用。为研究SlJAZ11的功能,本研究分析了水杨酸(SA)、茉莉酸等激素以及病原菌侵染处理后SlJAZ11... 茉莉酸(JA)参与调节植物生长、发育和防御等多种重要生物过程,其中JAZ蛋白作为抑制子,在茉莉酸介导的生物和非生物胁迫响应过程中起到重要作用。为研究SlJAZ11的功能,本研究分析了水杨酸(SA)、茉莉酸等激素以及病原菌侵染处理后SlJAZ11的表达模式。结果表明,SlJAZ11能够响应水杨酸、茉莉酸及丁香假单胞菌(Pst DC3000)的诱导。通过酵母双杂交筛选番茄cDNA文库,获得了14个SlJAZ11潜在的互作蛋白。进一步采用酵母双杂交点对点验证和双分子荧光互补技术(BiFC)对候选的SlENT、SlOOLG与SlJAZ11间的互作关系进行验证,发现SlENT和SlJAZ11存在互作。对SlENT的表达模式进行分析,发现其表达被SA和Pst DC3000显著抑制,而MeJA能显著诱导其表达,表明SlJAZ11可能通过与SlENT互作来调控JA介导的番茄抗病性。本研究可为阐明SlJAZ11功能与作用机制奠定良好的分子基础。 展开更多
关键词 番茄 茉莉酸 SljaZ11 酵母双杂交 SlENT
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部