As an active flow control technology and with the advantages of no moving components, the Sweeping jet actuator has become a hotspot in the field of flow control. However, the linear relationship between oscillation f...As an active flow control technology and with the advantages of no moving components, the Sweeping jet actuator has become a hotspot in the field of flow control. However, the linear relationship between oscillation frequency and momentum coefficient in a sweeping jet actuator makes it difficult to determine the dominant factors that affect control effectiveness. Decoupling the oscillation frequency and momentum coefficient, as well as determining the control mechanism, is the focus of studying the sweeping jet actuator. In this study, a novel sweeping jet actuator is designed using synthetic jets instead of feedback channels and applied to the flow separation control of NACA0018 airfoil. This article studies the control effect under three oscillation frequencies of F<sup>+</sup> = f × c/U<sub>∞</sub> = 1, 10, 100 and three momentum coefficients of C<sub>μ</sub> = 0.45%, 0.625%, 0.9%. The numerical results indicate that all three oscillation frequencies have good control effects on flow separation, and the control effect is best when F<sup>+</sup> = 1, with the maximum lift coefficient increasing by approximately 14% compared to the other two cases. And the sweeping jet actuator has a better ability to control flow separation as the momentum coefficient increases. By decoupling the characteristics of the sweeping jet actuator and conducting numerical analysis of the flow control effect, it will promote its better engineering application in the field of flow control. .展开更多
The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It...The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.展开更多
Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressur...Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.展开更多
Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, ...Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow.展开更多
Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To sup...Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To suppress cavitation,based on the idea of blocking the re-entrant jets,a special surface flow structure of 2D hydrofoil was proposed. The through-hole was made in the proper position of the hydrofoil. The incoming flow can outflow from this jet-hole automatically depending on the pressure difference between pressure side and suction side. Re-entrant jet growth can be weakened by optimizing the jet-hole geometry. Based on the standard k-ε turbulence model and Schnerr & Sauer cavitation model,under different cavitation numbers( σ) and jet-angles( β) for NACA0066( 2D) hydrofoil with 8° angles of attack,cavitation field numerical analysis was carried out. The results show that 2D hydrofoil cavitation flow had a strong unsteadiness. Making a jet-hole at the junction between the re-entrant jet and cavity can effectively minimize cloud cavitation. For a certain cavitation condition,optimal jet-angles( β) can be obtained to control cavitation growth. For the same β,the effects of cavitation suppression were changed with different cavitation numbers( σ). Consequently,suitable jet-angle and jet-position could extend the stable operating range of the hydrofoil.展开更多
A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wav...A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wave successfully, there may exist two types of detonations. If the detonation velocity is greater than the velocity of coming flow, there will be a normal detonation here. Because of the influence of boundary layer separation, the upstream detonation velocity is much greater than the Chapman-Jouguet (C J) detonation velocity. On the other hand, if the detonation velocity is less than the velocity of coming flow, an oblique detonation wave (ODW) will form. The ODW needs a continuous hot jet to sustain itself. If the jet pressure is lower than a certain value, the ODW will decouple. In contrast, the normal detonation wave can sustain itself without the hot jet.展开更多
Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal je...Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 MPa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of p articles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.展开更多
Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source.The use of a plane jet is proposed to reduce this flow-induced noise.Tandem rods with different ...Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source.The use of a plane jet is proposed to reduce this flow-induced noise.Tandem rods with different gap widths were utilized as the test body.Both acoustic and aerodynamic tests were conducted in order to validate this technique.Acoustic test results proved that overall noise emission from tandem rods could be lowered and tonal noise could be removed with use of the plane jet.However,when the plane jet was turned on,in some frequency range it could be the subsequent main contributor instead of tandem rods to total noise emission whilst in some frequency range rods could still be the main contributor.Moreover,aerodynamic tests fundamentally studied explanations for the noise reduction.Specifically,not only impinging speed to rods but speed and turbulence level to the top edge of the rear rod could be diminished by the upstream plane jet.Consequently,the vortex shedding induced by the rear rod was reduced,which was confirmed by the speed,Reynolds stress as well as the velocity fluctuation spectral measured in its wake.This study confirmed the potential use of a plane jet towards landing gear noise reduction.展开更多
Active control of wall his is important in both application and basic researches. In order to establish a solid background for the expected application,it is necessary to perform detailed studies on the base nows,on t...Active control of wall his is important in both application and basic researches. In order to establish a solid background for the expected application,it is necessary to perform detailed studies on the base nows,on their stability characteristics and on the identification technique of coherent structures. This paper is a summarizing article rather than a detailed technical report, Its main purpose is just to introduce the recent progress in the related area.展开更多
The nanoparticle transportation and Brownian diffusion in planar jet flow is simulated via large eddy simulation in this work. To thorough compare the Brownian diffusion with different particle size, we computed three...The nanoparticle transportation and Brownian diffusion in planar jet flow is simulated via large eddy simulation in this work. To thorough compare the Brownian diffusion with different particle size, we computed three particle diameter dp = 1 nm, 10 nm and 50 nm in one simulation process simultaneously. The numerical results showed that at the flow de- veloping stage, the particle mass concentration pattern develops as the flow vorticity develops. The distribution is nearly uniform at the lower reaches of the nozzle exit. When the jet flow is developing on, vortexes always carry the particle from upstream to downstream, from the central axis region to the outer mixing layer of jet. At the front of the jet flow, particles distribute more homogeneous for they have more residence time to diffuse from higher concentration region to the lower concentration region. The time averaged particle concentration distribution patterns are similar to Gaussian distribution form. The maximum concentration contributed by diffusion is present at the mixing layer near the nozzle exit. The farther away from the nozzle exit in the cross-stream direction, the smaller the concentration is. The maximum concentration contributed by diffusion is several orders smaller than that contributed by flow convection.展开更多
To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε tur...To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets.展开更多
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based ...Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based on the jet diameter.Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena,including flow structures, turbulent characters and frequency behaviors,have been studied.The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures,vortical structures and jet shear layers.The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio.Turbulent characters are clarified to be closely related to the flow structures.The jet penetration increases with the increase of the momentum ratio.Moreover,the dominant frequencies of the flow structures are obtained using spectral analysis.The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow展开更多
The paper focuses on the triple jets interaction with a hypersonic external flow on a revolution body. The experimental model is a ogive-cylinder body with three supersonic nozzles, which are aligned along the flow di...The paper focuses on the triple jets interaction with a hypersonic external flow on a revolution body. The experimental model is a ogive-cylinder body with three supersonic nozzles, which are aligned along the flow direction. The freestream Mach numbers are 5 and 6. The spatial and surface flow characteristics are illustrated by the schlieren photographs and the typical pressure distribution. The results show that there are multi-wave system, separation, reattachment, multi-peak pressure, high-pressure and low-pressure zone boundaries obvious distinction in tri-jets interference flowfield. The present paper also analyzes how do the pressure ratio, the angle of attack, and Mach number effect on tri-jets interaction characteristics.展开更多
Particle coagulation by Brownian motion is an important but difficult research topic.When particle volume concentration is larger than 0.1%,the classic SMOLUCHOWSKI equation is not applicative anymore.The high concent...Particle coagulation by Brownian motion is an important but difficult research topic.When particle volume concentration is larger than 0.1%,the classic SMOLUCHOWSKI equation is not applicative anymore.The high concentration coagulation,with HEINE's correction,source terms for the Taylor-series expansion method of moments(TEMOM) are firstly driven in this paper.Ultra-fine particle(d0?100 mm) with initial volume fraction f?1% coagulation in a planar jet turbulence flow is simulated via the large eddy simulation(LES).The instantaneous and time-averaged particle distributions and the high concentration enhancement are given out.The particle number concentration distribution results show that the coagulation is more intense comparing to dilute case in previous research,especially near the nozzle exit.After jet flow is fully developed,the effect is much more obvious at the region between vortexes.The time-averaged γ(the high concentration enhance factor) distributes sharply and symmetrically about the jet centerline at the upstream,but becomes broad and flat at downstream where the cross-stream averaged γ fluctuates drastically.As a new attempt,this paper shows Brownian coagulation with high concentration also can be calculated via TEMOM appropriately,and the coagulation at the region between vortexes is about 1.38 times intensive of the dilute result calculated by the classic Smoluchowski theory.展开更多
The flow instability of nanofluids in a jet is studied numerically under various shape factors of the velocity profile, Reynolds numbers, nanoparticle mass loadings,Knudsen numbers, and Stokes numbers. The numerical r...The flow instability of nanofluids in a jet is studied numerically under various shape factors of the velocity profile, Reynolds numbers, nanoparticle mass loadings,Knudsen numbers, and Stokes numbers. The numerical results are compared with the available theoretical results for validation. The results show that the presence of nanoparticles enhances the flow stability, and there exists a critical particle mass loading beyond which the flow is stable. As the shape factor of the velocity profile and the Reynolds number increase, the flow becomes more unstable. However, the flow becomes more stable with the increase of the particle mass loading. The wavenumber corresponding to the maximum of wave amplification becomes large with the increase of the shape factor of the velocity profile, and with the decrease of the particle mass loading and the Reynolds number. The variations of wave amplification with the Stokes number and the Knudsen number are not monotonic increasing or decreasing, and there exists a critical Stokes number and a Knudsen number with which the flow is relatively stable and most unstable,respectively, when other parameters remain unchanged. The perturbation with the first azimuthal mode makes the flow unstable more easily than that with the axisymmetric azimuthal mode. The wavenumbers corresponding to the maximum of wave amplification are more concentrated for the perturbation with the axisymmetric azimuthal mode.展开更多
By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and continuous p...By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and continuous phase,respectively.The probability of binary,ternary,and multiple breakup of oil drops in jet flows is a function of the jet Reynolds number.To address the underlying mechanisms of this transformation of drop breakup,we performed two-dimensional particle image velocimetry(PIV)experiments of single-phase jet flows.With the combination of drop breakup phenomenon and two-dimensional PIV results in a single-phase flow field,these transformation conditions can be estimated:the capillary number ranges from 0.17 to 0.27,and the Weber number ranges from 55 to 111.展开更多
The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the resul...The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the results of MHD flow velocity distribution in cross-section of channels (rectangular duct and circular pipe), and the expected results from the modeling are well agreed with the recent experimental data obtained. It is the first modeling which can efficiently explain the experimental results of liquid-metal free surface jet flow.展开更多
Numerical simulations are presented for jet flow inside a launching box. The predictions are based on solutions of the unsteady three-dimensional Reynolds-averaged Navier-stokes equations. Since the pressure opening t...Numerical simulations are presented for jet flow inside a launching box. The predictions are based on solutions of the unsteady three-dimensional Reynolds-averaged Navier-stokes equations. Since the pressure opening the forward cover is given, the pressure opening the backward cover is designed by analyzing the flow field inside the launching box. The κ -ε turbulent model is presented and the structured meshes are used through the whole computational field.展开更多
An electrochemical cell consisting of a double horizontal Impinging Jet Cell (IJC) has been conceived and characterized. The purpose of this system is the simultaneous electrodeposition of a composite metal/particle c...An electrochemical cell consisting of a double horizontal Impinging Jet Cell (IJC) has been conceived and characterized. The purpose of this system is the simultaneous electrodeposition of a composite metal/particle coating on both surfaces of a metal sheet. The silica particles imprint in the nickel matrix has allowed to distinguish four different flow areas onto the electrode namely the stagnation area, the radial flow area characterized by a higher flow speed, the return flow area that involves gravity effect, and the drainage area with a constant draining speed. Based on the limiting current evolution as a function of the Reynolds number, three flow modes were extracted: the Laminar Low Flow (LLF), the Laminar High Flow (LHF) and the Disturbance. The IJC investigated ensures a laminar flow for a large range of flow rate from a nozzle-to-sample distance of 19 mm and creates an laminar flow ovoid plan merged with the sample for the high flows.展开更多
The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under th...The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under the current only or the wave only environment. To obtain better understanding of the jet behaviors in a realistic situation, a series of physical experiments on the initial dilution of a vertical round jet in the wavy cross-flow environment are conducted. The diluted processes of the jet are recorded by a high-resolution camcorder and the concentration fields of the jet are measured with a peristaltic suction pumping system. When the jet is discharged into the wavy cross-flow environment, a distinctive phenomenon, namely "effluent clouds", is observed. According to the quantitative measurements, the jet width in the wavy cross-flow environment increases more significantly than that does in the cross-flow only environment, indicating that the waves impose a positive effect on the enhancement of jet initial dilution. In order to generalize the experimental findings, a comprehensive velocity scale ua and a characteristic length scale l are introduced. Through dimensional analysis, it is found that the dimensionless centerline concentration trajectories cy/l is in proportion to 1/3 power of the dimensionless downstream distance x/l, and the dimensionless centerline dilution 2c aS Q/(u l) is proportional to the square of the dimensionless centerline trajectory cy/l. Several empirical equations are then derived by using the Froude number of cross-flow Frc as a reference coefficient. This paper provides a better understanding and new estimations of the jet initial dilution under the combined effect of waves and cross-flow current.展开更多
文摘As an active flow control technology and with the advantages of no moving components, the Sweeping jet actuator has become a hotspot in the field of flow control. However, the linear relationship between oscillation frequency and momentum coefficient in a sweeping jet actuator makes it difficult to determine the dominant factors that affect control effectiveness. Decoupling the oscillation frequency and momentum coefficient, as well as determining the control mechanism, is the focus of studying the sweeping jet actuator. In this study, a novel sweeping jet actuator is designed using synthetic jets instead of feedback channels and applied to the flow separation control of NACA0018 airfoil. This article studies the control effect under three oscillation frequencies of F<sup>+</sup> = f × c/U<sub>∞</sub> = 1, 10, 100 and three momentum coefficients of C<sub>μ</sub> = 0.45%, 0.625%, 0.9%. The numerical results indicate that all three oscillation frequencies have good control effects on flow separation, and the control effect is best when F<sup>+</sup> = 1, with the maximum lift coefficient increasing by approximately 14% compared to the other two cases. And the sweeping jet actuator has a better ability to control flow separation as the momentum coefficient increases. By decoupling the characteristics of the sweeping jet actuator and conducting numerical analysis of the flow control effect, it will promote its better engineering application in the field of flow control. .
文摘The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.
文摘Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.
基金supported by National Natural Science Foundation of China(Nos.51307030,51277038)
文摘Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow.
基金supported by the National Key Basic Research Special Foundation of China (2015CB057301)
文摘Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To suppress cavitation,based on the idea of blocking the re-entrant jets,a special surface flow structure of 2D hydrofoil was proposed. The through-hole was made in the proper position of the hydrofoil. The incoming flow can outflow from this jet-hole automatically depending on the pressure difference between pressure side and suction side. Re-entrant jet growth can be weakened by optimizing the jet-hole geometry. Based on the standard k-ε turbulence model and Schnerr & Sauer cavitation model,under different cavitation numbers( σ) and jet-angles( β) for NACA0066( 2D) hydrofoil with 8° angles of attack,cavitation field numerical analysis was carried out. The results show that 2D hydrofoil cavitation flow had a strong unsteadiness. Making a jet-hole at the junction between the re-entrant jet and cavity can effectively minimize cloud cavitation. For a certain cavitation condition,optimal jet-angles( β) can be obtained to control cavitation growth. For the same β,the effects of cavitation suppression were changed with different cavitation numbers( σ). Consequently,suitable jet-angle and jet-position could extend the stable operating range of the hydrofoil.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91016028 and 91016012)
文摘A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wave successfully, there may exist two types of detonations. If the detonation velocity is greater than the velocity of coming flow, there will be a normal detonation here. Because of the influence of boundary layer separation, the upstream detonation velocity is much greater than the Chapman-Jouguet (C J) detonation velocity. On the other hand, if the detonation velocity is less than the velocity of coming flow, an oblique detonation wave (ODW) will form. The ODW needs a continuous hot jet to sustain itself. If the jet pressure is lower than a certain value, the ODW will decouple. In contrast, the normal detonation wave can sustain itself without the hot jet.
基金supported by National Natural Science Foundation of China (Grant No. 50806031)
文摘Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 MPa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of p articles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.
基金Project partially supported by the European Union FP7 Clean Sky Joint Technology Initiative“ALLEGRA”(Grant No.308225)
文摘Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source.The use of a plane jet is proposed to reduce this flow-induced noise.Tandem rods with different gap widths were utilized as the test body.Both acoustic and aerodynamic tests were conducted in order to validate this technique.Acoustic test results proved that overall noise emission from tandem rods could be lowered and tonal noise could be removed with use of the plane jet.However,when the plane jet was turned on,in some frequency range it could be the subsequent main contributor instead of tandem rods to total noise emission whilst in some frequency range rods could still be the main contributor.Moreover,aerodynamic tests fundamentally studied explanations for the noise reduction.Specifically,not only impinging speed to rods but speed and turbulence level to the top edge of the rear rod could be diminished by the upstream plane jet.Consequently,the vortex shedding induced by the rear rod was reduced,which was confirmed by the speed,Reynolds stress as well as the velocity fluctuation spectral measured in its wake.This study confirmed the potential use of a plane jet towards landing gear noise reduction.
文摘Active control of wall his is important in both application and basic researches. In order to establish a solid background for the expected application,it is necessary to perform detailed studies on the base nows,on their stability characteristics and on the identification technique of coherent structures. This paper is a summarizing article rather than a detailed technical report, Its main purpose is just to introduce the recent progress in the related area.
文摘The nanoparticle transportation and Brownian diffusion in planar jet flow is simulated via large eddy simulation in this work. To thorough compare the Brownian diffusion with different particle size, we computed three particle diameter dp = 1 nm, 10 nm and 50 nm in one simulation process simultaneously. The numerical results showed that at the flow de- veloping stage, the particle mass concentration pattern develops as the flow vorticity develops. The distribution is nearly uniform at the lower reaches of the nozzle exit. When the jet flow is developing on, vortexes always carry the particle from upstream to downstream, from the central axis region to the outer mixing layer of jet. At the front of the jet flow, particles distribute more homogeneous for they have more residence time to diffuse from higher concentration region to the lower concentration region. The time averaged particle concentration distribution patterns are similar to Gaussian distribution form. The maximum concentration contributed by diffusion is present at the mixing layer near the nozzle exit. The farther away from the nozzle exit in the cross-stream direction, the smaller the concentration is. The maximum concentration contributed by diffusion is several orders smaller than that contributed by flow convection.
基金This project is supported by Scientific Research Foundation of Ministry of Education of China for Returnee.
文摘To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets.
基金supported by the National Natural Science Foundation of China(11072236)the Fundamental Research Funds for the Central Universities(WK2090050007)
文摘Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based on the jet diameter.Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena,including flow structures, turbulent characters and frequency behaviors,have been studied.The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures,vortical structures and jet shear layers.The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio.Turbulent characters are clarified to be closely related to the flow structures.The jet penetration increases with the increase of the momentum ratio.Moreover,the dominant frequencies of the flow structures are obtained using spectral analysis.The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow
文摘The paper focuses on the triple jets interaction with a hypersonic external flow on a revolution body. The experimental model is a ogive-cylinder body with three supersonic nozzles, which are aligned along the flow direction. The freestream Mach numbers are 5 and 6. The spatial and surface flow characteristics are illustrated by the schlieren photographs and the typical pressure distribution. The results show that there are multi-wave system, separation, reattachment, multi-peak pressure, high-pressure and low-pressure zone boundaries obvious distinction in tri-jets interference flowfield. The present paper also analyzes how do the pressure ratio, the angle of attack, and Mach number effect on tri-jets interaction characteristics.
基金supported by National Natural Science Foundation of China (Grant No. 50976107)National Key Technology R&D Program of China (Grant No. 2009BAF39B01)the Science Foundation of Zhejiang Sci-Tech University (ZSTU) of China (Grant No. 1003808-Y)
文摘Particle coagulation by Brownian motion is an important but difficult research topic.When particle volume concentration is larger than 0.1%,the classic SMOLUCHOWSKI equation is not applicative anymore.The high concentration coagulation,with HEINE's correction,source terms for the Taylor-series expansion method of moments(TEMOM) are firstly driven in this paper.Ultra-fine particle(d0?100 mm) with initial volume fraction f?1% coagulation in a planar jet turbulence flow is simulated via the large eddy simulation(LES).The instantaneous and time-averaged particle distributions and the high concentration enhancement are given out.The particle number concentration distribution results show that the coagulation is more intense comparing to dilute case in previous research,especially near the nozzle exit.After jet flow is fully developed,the effect is much more obvious at the region between vortexes.The time-averaged γ(the high concentration enhance factor) distributes sharply and symmetrically about the jet centerline at the upstream,but becomes broad and flat at downstream where the cross-stream averaged γ fluctuates drastically.As a new attempt,this paper shows Brownian coagulation with high concentration also can be calculated via TEMOM appropriately,and the coagulation at the region between vortexes is about 1.38 times intensive of the dilute result calculated by the classic Smoluchowski theory.
基金Project supported by the Major Program of National Natural Science Foundation of China(No.11132008)
文摘The flow instability of nanofluids in a jet is studied numerically under various shape factors of the velocity profile, Reynolds numbers, nanoparticle mass loadings,Knudsen numbers, and Stokes numbers. The numerical results are compared with the available theoretical results for validation. The results show that the presence of nanoparticles enhances the flow stability, and there exists a critical particle mass loading beyond which the flow is stable. As the shape factor of the velocity profile and the Reynolds number increase, the flow becomes more unstable. However, the flow becomes more stable with the increase of the particle mass loading. The wavenumber corresponding to the maximum of wave amplification becomes large with the increase of the shape factor of the velocity profile, and with the decrease of the particle mass loading and the Reynolds number. The variations of wave amplification with the Stokes number and the Knudsen number are not monotonic increasing or decreasing, and there exists a critical Stokes number and a Knudsen number with which the flow is relatively stable and most unstable,respectively, when other parameters remain unchanged. The perturbation with the first azimuthal mode makes the flow unstable more easily than that with the axisymmetric azimuthal mode. The wavenumbers corresponding to the maximum of wave amplification are more concentrated for the perturbation with the axisymmetric azimuthal mode.
基金financial supports from the National Key Research and Development Program of China(2016YFB0302801)National Natural Science Foundation of China(21676007)+1 种基金Fundamental Research Funds for the Central Universities(XK1802-1)Scientific Research and Technology Development Projects of China National Petroleum Corporation(2016B2605)。
文摘By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and continuous phase,respectively.The probability of binary,ternary,and multiple breakup of oil drops in jet flows is a function of the jet Reynolds number.To address the underlying mechanisms of this transformation of drop breakup,we performed two-dimensional particle image velocimetry(PIV)experiments of single-phase jet flows.With the combination of drop breakup phenomenon and two-dimensional PIV results in a single-phase flow field,these transformation conditions can be estimated:the capillary number ranges from 0.17 to 0.27,and the Weber number ranges from 55 to 111.
基金The project partly supported by National Nature Science Foundation of China (No. 10275019)
文摘The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the results of MHD flow velocity distribution in cross-section of channels (rectangular duct and circular pipe), and the expected results from the modeling are well agreed with the recent experimental data obtained. It is the first modeling which can efficiently explain the experimental results of liquid-metal free surface jet flow.
文摘Numerical simulations are presented for jet flow inside a launching box. The predictions are based on solutions of the unsteady three-dimensional Reynolds-averaged Navier-stokes equations. Since the pressure opening the forward cover is given, the pressure opening the backward cover is designed by analyzing the flow field inside the launching box. The κ -ε turbulent model is presented and the structured meshes are used through the whole computational field.
文摘An electrochemical cell consisting of a double horizontal Impinging Jet Cell (IJC) has been conceived and characterized. The purpose of this system is the simultaneous electrodeposition of a composite metal/particle coating on both surfaces of a metal sheet. The silica particles imprint in the nickel matrix has allowed to distinguish four different flow areas onto the electrode namely the stagnation area, the radial flow area characterized by a higher flow speed, the return flow area that involves gravity effect, and the drainage area with a constant draining speed. Based on the limiting current evolution as a function of the Reynolds number, three flow modes were extracted: the Laminar Low Flow (LLF), the Laminar High Flow (LHF) and the Disturbance. The IJC investigated ensures a laminar flow for a large range of flow rate from a nozzle-to-sample distance of 19 mm and creates an laminar flow ovoid plan merged with the sample for the high flows.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379072 and 51309092)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120094110016)+1 种基金the‘111’Project of the Ministry of Education and the State Administration of Foreign Experts AffairsChina(Grant No.B12032)
文摘The phenomenon of wastewater discharged into coastal waters can be simplified as a turbulent jet under the effect of waves and currents. Previous studies have been carried out to investigate the jet behaviors under the current only or the wave only environment. To obtain better understanding of the jet behaviors in a realistic situation, a series of physical experiments on the initial dilution of a vertical round jet in the wavy cross-flow environment are conducted. The diluted processes of the jet are recorded by a high-resolution camcorder and the concentration fields of the jet are measured with a peristaltic suction pumping system. When the jet is discharged into the wavy cross-flow environment, a distinctive phenomenon, namely "effluent clouds", is observed. According to the quantitative measurements, the jet width in the wavy cross-flow environment increases more significantly than that does in the cross-flow only environment, indicating that the waves impose a positive effect on the enhancement of jet initial dilution. In order to generalize the experimental findings, a comprehensive velocity scale ua and a characteristic length scale l are introduced. Through dimensional analysis, it is found that the dimensionless centerline concentration trajectories cy/l is in proportion to 1/3 power of the dimensionless downstream distance x/l, and the dimensionless centerline dilution 2c aS Q/(u l) is proportional to the square of the dimensionless centerline trajectory cy/l. Several empirical equations are then derived by using the Froude number of cross-flow Frc as a reference coefficient. This paper provides a better understanding and new estimations of the jet initial dilution under the combined effect of waves and cross-flow current.