The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance an...The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance and stability.Therefore,the adoption of appropriate flow control technology holds significant academic and engineering significance.This study employs the Reynolds-averaged Navier-Stokes(RANS)method to investigate the effects and mechanisms of active/passive Co-flow Jet(CFJ)control,implemented by introducing full-height and partial height jet slots between the suction surface and end wall of a compressor cascade.The results indicate that passive CFJ control significantly reduces the impact of corner separation at small incidence,with partial-height control further enhancing the effectiveness.The introduction of active CFJ enables separation control at large incidence,improving blade performance under different operating conditions.Active control achieves this by reducing the scale of corner separation vortices,effectively reducing the size of the separation region and enhancing blade performance.展开更多
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally inve...The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.展开更多
In this study, exergy dynamic and advanced exergy analyses are applied to theturbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidableexergies under the environment conditions of 15 ...In this study, exergy dynamic and advanced exergy analyses are applied to theturbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidableexergies under the environment conditions of 15 C temperature and 1 bar pressure. Themaximum exergy point in the turbojet engine is found for the combustor in which C11H23(Jet-A1) fuel is combusted with air, while the minimum one is determined for the aircompressor head where the free air enters. The combustion chamber has the maximum fuel,product and irreversibility rates and the air compressor has the minimum fuel and product ex-ergy values, while the minimum irreversibility is found for the turbine. Maximum improvementpotential rate is found for the combustion chamber (5141.27 kW), while minimum rate is deter-mined for the turbine of system (6.95 kW). Also, the turbine component has the highest exergyefficiency (97.20%) due to its expansion process, while combustion chamber component hasthe lowest exergy efficiency (55.39%) due to low efficient combustion process of the fuel.Furthermore, the mexogenous exergy destructions from maximum to minimum are found for the combustion chamber, air compressor and gas turbine units, respectively. Considering exergydynamic analysis, the mexogenous exergy destruction rates of the combustion chamber, aircompressor and gas turbine are found as 184.4 kW, 103.97 kW and 9.99 kW, respectively.Considering all results, the combustion chamber is the primer component to be handled for bet-ter efficiency and improvement.展开更多
基金National Science&Technology Major Project(Grant No.2017-II-0004-0016)National Nature Science Foundation of China(Grant No.52176044)。
文摘The design objectives of modern aircraft engines include high load capacity,efficiency,and stability.With increasing loads,the phenomenon of corner separation in compressors intensifies,affecting engine performance and stability.Therefore,the adoption of appropriate flow control technology holds significant academic and engineering significance.This study employs the Reynolds-averaged Navier-Stokes(RANS)method to investigate the effects and mechanisms of active/passive Co-flow Jet(CFJ)control,implemented by introducing full-height and partial height jet slots between the suction surface and end wall of a compressor cascade.The results indicate that passive CFJ control significantly reduces the impact of corner separation at small incidence,with partial-height control further enhancing the effectiveness.The introduction of active CFJ enables separation control at large incidence,improving blade performance under different operating conditions.Active control achieves this by reducing the scale of corner separation vortices,effectively reducing the size of the separation region and enhancing blade performance.
基金the authors appreciate the vice-chancellor of research and technology of the University of Isfahan for supporting this work under Grant No.911401707。
文摘The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.
文摘In this study, exergy dynamic and advanced exergy analyses are applied to theturbojet engine to assess its mexogenous, endogenous, exogenous, avoidable and unavoidableexergies under the environment conditions of 15 C temperature and 1 bar pressure. Themaximum exergy point in the turbojet engine is found for the combustor in which C11H23(Jet-A1) fuel is combusted with air, while the minimum one is determined for the aircompressor head where the free air enters. The combustion chamber has the maximum fuel,product and irreversibility rates and the air compressor has the minimum fuel and product ex-ergy values, while the minimum irreversibility is found for the turbine. Maximum improvementpotential rate is found for the combustion chamber (5141.27 kW), while minimum rate is deter-mined for the turbine of system (6.95 kW). Also, the turbine component has the highest exergyefficiency (97.20%) due to its expansion process, while combustion chamber component hasthe lowest exergy efficiency (55.39%) due to low efficient combustion process of the fuel.Furthermore, the mexogenous exergy destructions from maximum to minimum are found for the combustion chamber, air compressor and gas turbine units, respectively. Considering exergydynamic analysis, the mexogenous exergy destruction rates of the combustion chamber, aircompressor and gas turbine are found as 184.4 kW, 103.97 kW and 9.99 kW, respectively.Considering all results, the combustion chamber is the primer component to be handled for bet-ter efficiency and improvement.