The fabrication of nanocrystalline nickel coatings was conducted by pulse jet electrodeposition on the substrate of 45# carbon steel.The effects of average current density on the surface morphology,microstructure,aver...The fabrication of nanocrystalline nickel coatings was conducted by pulse jet electrodeposition on the substrate of 45# carbon steel.The effects of average current density on the surface morphology,microstructure,average grain size and microhardness of nickel coatings were investigated by scanning electron microscopy(SEM),X-ray diffractometry(XRD)and microhardness measurement.In addition,the corrosion resistances of coating and substrate were compared.It is revealed that the nickel coatings prepared by pulse jet electrodeposition exhibit a fine-grained structure with a smooth surface and a high density,although some pores and defects are still present in coatings.With the increase of average current density,the average grain size of nickel coatings is reduced at first and then increased.The coating with the optimum compactness,the smallest average grain size(13.7 nm)and the highest microhardness are obtained at current density of 39.8 A/dm2.The corrosion resistance is obviously increased for the coatings prepared by pulse jet electrodeposition;however,the corrosion rate is increased after a certain period due to the penetration of the corrosive media.展开更多
Nanoparticle-reinforced metal matrix composite coatings have significant potential in mechanical part surface strengthening owing their excellent mechanical properties.This paper reports a phenomenon in which the grai...Nanoparticle-reinforced metal matrix composite coatings have significant potential in mechanical part surface strengthening owing their excellent mechanical properties.This paper reports a phenomenon in which the grain orientation gradually evolves to(220)as the deposition current density increases when preparing nanoparticle-reinforced nickel-based composite coatings through jet electrodeposition(JED).During the preparation of the Ni-SiC composite coatings,the deposition current density increased from 180 A/dm2 to 220 A/dm2,and TC(220)gradually increase from 41.4%to 97.7%.With an increase of TC(220),the self-corrosion potential increases from−0.575 to−0.477 V,the corrosion current density decreases from 9.52μA/cm^2 to 2.76μA/cm^2,the diameter of the corrosion pits that after 10 days of immersion in a 3.5 wt%NaCl solution decreases from 278–944 nm to 153–260 nm,and the adhesion of the coating increases from 24.9 N to 61.6 N.Compared a conventional electrodeposition(CED),the Ni-SiC composite coating using JED has the advantages of a smooth surface morphology,high corrosion resistance,and strong adhesion,which are more obvious with an increase in TC(220).展开更多
Nickel coatings with different microstructures were synthesized by pulse jet electrodeposition technique.Their morphology and microstructure were investigated by scanning electron microscopy(SEM)and transmission ele...Nickel coatings with different microstructures were synthesized by pulse jet electrodeposition technique.Their morphology and microstructure were investigated by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The corrosion property of the coatings was studied by using polarization,electrochemical impedance spectroscopy(EIS),potential of zero free charge(PZFC) measurements and Mott-Schottky(M-S) relationship.The results showed that the coating with grain size of 50 nm possessed higher corrosion resistance than that with grain size of 10 nm.This abnormal behavior may be related to the existence of nanoscale twins in the coatings and the lower concentration of acceptor in the passive films.展开更多
基金Project(50175053) supported by the National Natural Science Foundation of China
文摘The fabrication of nanocrystalline nickel coatings was conducted by pulse jet electrodeposition on the substrate of 45# carbon steel.The effects of average current density on the surface morphology,microstructure,average grain size and microhardness of nickel coatings were investigated by scanning electron microscopy(SEM),X-ray diffractometry(XRD)and microhardness measurement.In addition,the corrosion resistances of coating and substrate were compared.It is revealed that the nickel coatings prepared by pulse jet electrodeposition exhibit a fine-grained structure with a smooth surface and a high density,although some pores and defects are still present in coatings.With the increase of average current density,the average grain size of nickel coatings is reduced at first and then increased.The coating with the optimum compactness,the smallest average grain size(13.7 nm)and the highest microhardness are obtained at current density of 39.8 A/dm2.The corrosion resistance is obviously increased for the coatings prepared by pulse jet electrodeposition;however,the corrosion rate is increased after a certain period due to the penetration of the corrosive media.
基金Supported by National Natural Science Foundation of China(Grant No.51675535)Major Research Project of Shandong Province of China(Grant No.2019GGX104068)+3 种基金Key Pre-Research Foundation of Military Equipment of China(Grant No.6140923030702)National Science and Technology Major Project of China(Grant No.2017ZX05072)Graduate Innovation Protect of China University of Petroleum(East China)(Grant No.YCX2020059)Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province of China(Grant No.2019KJB016).
文摘Nanoparticle-reinforced metal matrix composite coatings have significant potential in mechanical part surface strengthening owing their excellent mechanical properties.This paper reports a phenomenon in which the grain orientation gradually evolves to(220)as the deposition current density increases when preparing nanoparticle-reinforced nickel-based composite coatings through jet electrodeposition(JED).During the preparation of the Ni-SiC composite coatings,the deposition current density increased from 180 A/dm2 to 220 A/dm2,and TC(220)gradually increase from 41.4%to 97.7%.With an increase of TC(220),the self-corrosion potential increases from−0.575 to−0.477 V,the corrosion current density decreases from 9.52μA/cm^2 to 2.76μA/cm^2,the diameter of the corrosion pits that after 10 days of immersion in a 3.5 wt%NaCl solution decreases from 278–944 nm to 153–260 nm,and the adhesion of the coating increases from 24.9 N to 61.6 N.Compared a conventional electrodeposition(CED),the Ni-SiC composite coating using JED has the advantages of a smooth surface morphology,high corrosion resistance,and strong adhesion,which are more obvious with an increase in TC(220).
基金financial support from the National Basic Research Program of China (No.2014CB643301)the National Natural Science Foundation of China (Nos.50971050 and 51001036)+3 种基金the Program for New Century Excellent Talents in University (No.NCET-11-0575)the Ministry of Science and Technology of the People’s Republic of China (No.2012FY113000the Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University)Ministry of Education (HEUCF20151011)
文摘Nickel coatings with different microstructures were synthesized by pulse jet electrodeposition technique.Their morphology and microstructure were investigated by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).The corrosion property of the coatings was studied by using polarization,electrochemical impedance spectroscopy(EIS),potential of zero free charge(PZFC) measurements and Mott-Schottky(M-S) relationship.The results showed that the coating with grain size of 50 nm possessed higher corrosion resistance than that with grain size of 10 nm.This abnormal behavior may be related to the existence of nanoscale twins in the coatings and the lower concentration of acceptor in the passive films.