Summer precipitation patterns of Shandong Province are relatively independent with regard to the whole eastern China region.To study the rules and causes of precipitation variations,three main climate modes-on the ann...Summer precipitation patterns of Shandong Province are relatively independent with regard to the whole eastern China region.To study the rules and causes of precipitation variations,three main climate modes-on the annual,seasonal,and climatic intra-seasonal oscillation(CISO) scales-are extracted using a harmonic analysis method based on daily precipitation of Shandong during 1965-2009 and multi-year averaged pentad precipitation at 722 stations in China during 1971-2000.Among the three precipitation climate modes,the annual mode is closely related to the annual cycle of Earth-Atmosphere thermal system,which is characterized by the periodic dry and wet seasons.The seasonal mode reflects the monsoon effect on precipitation and the main flood season's contribution to annual precipitation variations.As an important climatic signal,the CISO mode is more evident during summer monsoon.The gradual modulations of the CISO mode,seasonal mode,and annual mode control the annual variation of precipitation.To study the relationship between precipitation climate modes and atmospheric circulations,an East Asian Westerly Jet Index(EAWJI) is defined in this paper.It is revealed that precipitation of Shandong is closely related to EAWJI in all climate modes.A wet or dry phase of each climate mode corresponds to a specific atmospheric circulation pattern.The phase of the annual mode is reverse to that of EAWJI.During the wet phase of the seasonal mode(weak phase of EAWJI),the atmospheric circulation in and around Shandong is characterized by upper-level divergence and low-level convergence.A reversed atmospheric circulation exists for the dry phase(strong phase for EAWJI).In the summer wet phase of CISO mode(strong phase of EAWJI),Shandong is controlled by upper-level divergence and low-level convergence.Again,the dry phase is corresponding to a reversed circulation structure.The methodology employed in this research,i.e.studying the precipitation climatic variations in terms of independent components of different temporal scales,provides a new approach for annual and seasonal precipitation prediction.展开更多
Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the cone- jet configuration. The cone and the jet of aqueous s...Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the cone- jet configuration. The cone and the jet of aqueous solutions of polyethylene oxide (PEO) are formed from an orifice of a capillary tube under the electric field. The viscoelastic con- stitutive relationship of the PEO solution is measured and discussed. The phenomena owing to the jet instability are described, five flow modes and corresponding structures are obtained with variations of the fluid flow rate Q, the electric potential U and the distance h from the orifice of the cap- illary tube to the collector. The flow modes of the cone-jet configuration involves the steady bending mode, the rotat- ing bending mode, the swinging rotating mode, the blurring bending mode and the branching mode. Regimes in the Q-U plane of the flow modes are also obtained. These results may provide the fundamentals to predict the operating conditions expected in practical applications.展开更多
The radial multiple jets-in-crossflow mixing structure(RMJCMS) is extensively used in industrial manufacture. In this research, the effects of thickness of injection ring on mixing performance and factors influencing ...The radial multiple jets-in-crossflow mixing structure(RMJCMS) is extensively used in industrial manufacture. In this research, the effects of thickness of injection ring on mixing performance and factors influencing the mixing performance of RMJCMS were discussed based on the results of computational fluid dynamics. The simulation results showed that the dimensionless mixing distance, with the increase of the thickness of injection ring, drops from 1.1 to 0.18 first and then increases to 0.27 while the uniformity of flux monotonously improves, manifesting that the consistency of flux is not the single element determining the mixing performance. Analyzing the simulation results, a conclusion was drawn that the consistency of flux, penetration mode and interaction among injection flows which can be altered by adjusting the thickness of injection ring, determine the mixing performance of RMJCMS jointly. That is to say, in RMJCMS an injection ring with a suitable thickness can realize the function of injection and rectification simultaneously, which not only improves the mixing performance but also reduces the complexity of RMJCMS as well.展开更多
Removal of brittle materials in the brittle or ductile mode inevitably causes damaged or strained surface layers containing cracks, scratches or dislocations. Within elastic deformation, the arrangement of each atom c...Removal of brittle materials in the brittle or ductile mode inevitably causes damaged or strained surface layers containing cracks, scratches or dislocations. Within elastic deformation, the arrangement of each atom can be recovered back to its original position without any defects introduced. Based on surface hydroxylation and chemisorption theory, material removal mechanism of quartz glass in the elastic mode is analyzed to obtain defect-free surface. Elastic contact condition between nanoparticle and quartz glass surface is confirmed from the Hertz contact theory model. Atoms on the quartz glass surface are removed by chemical bond generated by impact reaction in the elastic mode, so no defects are generated without mechanical process. Experiment was conducted on a numerically controlled system for nanoparticle jet polishing, and one flat quartz glass was polished in the elastic mode. Results show that scratches on the sample surface are completely removed away with no mechanical defects introduced, and microroughness(Ra) is decreased from 1.23 nm to 0.47 nm. Functional group Ce — O — Si on ceria nanoparticles after polishing was detected directly and indirectly by FTIR, XRD and XPS spectra analysis from which the chemical impact reaction is validated.展开更多
Electrical discharges in or in contact with liquid can produce H2O2effectively.However,wound treatment requires not only high energy yield,but also low temperature,stability,safety and reproducibility in H2O2generatio...Electrical discharges in or in contact with liquid can produce H2O2effectively.However,wound treatment requires not only high energy yield,but also low temperature,stability,safety and reproducibility in H2O2generation.Thus a method of producing H2O2in saline solution reacting with He/H2O plasma jet is described in this paper.Two working modes(bullet and arc modes)are stable while keeping at low temperature in the H2O2production.The production is much faster under the arc mode,but has rather high production rate and energy efficiency under the bullet mode.Plus,the energy efficiency increases with treatment time and higher moist helium flow rate under both modes,but especially the bullet mode.Moreover,55 min after the plasma treatment,there is only 6%degradation of H2O2concentration in the saline solution,and this indicates the potential of He/H2O plasma jet in plasma pharmacy.展开更多
JET has made unique contributions to the physics basis of ITER by virtue ofits ITER-like geometry, large plasma size and D-T capability. The paper discusses recent JET resultsand their implications for ITER in the are...JET has made unique contributions to the physics basis of ITER by virtue ofits ITER-like geometry, large plasma size and D-T capability. The paper discusses recent JET resultsand their implications for ITER in the areas of standard ELMy H-mode, D-T operation and advancedtokamak modes. In ELMy H-mode the separation of plasma energy into core and pedestal contributionsshows that core confinement scales like gyroBohm transport. High triangularity has a beneficialeffect on confinement and leads to an integrated plasma performance exceeding the ITER Q =10reference case. A revised type I ELM scaling predicts acceptable ELM energy losses for ITER, whileprogress in physics understanding of NTMs shows how to control them in ITER. The D-T experiments of1997 have validated ICRF scenarios for heating ITER/a reactor and identified ion minority schemes(e.g. (~3He)DT) with strong ion heating. They also show that the slowing down of alpha particles isclassical so that the self-heating by fusion alphas should cause no unexpected problems. With thePellet Enhanced Performance mode of 1988, JET has produced the first advanced tokamak mode, withpeaked pressure profiles sustained by reversed magnetic shear and strongly reduced transport. Morerecently, LHCD has provided easy tuning of reversed shear and reliable access to ITBs. Improvedphysics understanding shows that rational g-surfaces play a key role in the formation anddevelopment of ITBs. The demonstration of real time feedback control of plasma current and pressureprofiles opens the path towards fully controlled steady-state tokamak plasmas.展开更多
This paper proposes a novel composite dual-control bycombing the integral sliding mode control (ISMC) method basedon the finite time convergence theory with extended state observer(ESO) for a tracking problem of a...This paper proposes a novel composite dual-control bycombing the integral sliding mode control (ISMC) method basedon the finite time convergence theory with extended state observer(ESO) for a tracking problem of a missile with tail fins and reactionjetcontrol system (RCS). First, the ISMC method based on finitetime convergence is utilized to design the control law of tail fins andthe pulse control of RCS for the dual-control system, ensuring thesystem with rapid response and high accuracy of tracking. Then,ESO is employed for the estimation of aerodynamic disturbancesinfluenced by the airflow of thruster jets. With the characteristicof high accuracy estimation of ESO, the chattering free trackingperformance of the attack angle command and the robustnessof the control law are achieved. Meanwhile, the stability of thedual-control system is analyzed based on finite time convergencestability theorem and Lyapunov’s theorem. Finally, numerical simulationsdemonstrate the effectiveness of the proposed design.展开更多
A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using ...A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using optical and electrical methods,the discharge characteristics are investigated for the diffuse plasma plume.Results indicate that the discharge has a pulse characteristic,under the excitation of a DC voltage.The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode.It is found that,with an increment of the gas flow rate,both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode,reach their minima at about1.5 L/min,and then slightly increase in the turbulent mode.However,the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min,and then slightly decreases in the turbulent mode.展开更多
为合理选择微型荷电喷雾燃烧器的结构设计和工作参数,基于新设计的微型毛细管电极–环形电极–网格双电极荷电喷雾燃烧器,开展液体燃料乙醇雾化实验研究,得出了稳定的锥–射流雾化工作模式。基于该工作模式,对双电极产生的电场强度进行...为合理选择微型荷电喷雾燃烧器的结构设计和工作参数,基于新设计的微型毛细管电极–环形电极–网格双电极荷电喷雾燃烧器,开展液体燃料乙醇雾化实验研究,得出了稳定的锥–射流雾化工作模式。基于该工作模式,对双电极产生的电场强度进行理论计算,采用数值模拟的方法对流场和电场的耦合场进行分析求解,运用乙醇–空气两相流水平集方法模拟乙醇的流动。在体积流量为1 m L/h、毛细管电压4.19 k V、环形电极电压1 k V时得到了稳定的锥–射流、毛细管附近场强分布和两相流的速度场。经过理论计算得出了乙醇产生雾化的最小体积流量。研究表明:轴向场强和径向场强在锥射流内部均逐渐增大,在锥射流界面达到最大值后逐渐减小。由于射流的外侧速度矢量出现漩涡并沿分界面的切面方向运动,促进了锥射流的形成。当环形电极电压一定时,高于最小体积流量的乙醇在适合的毛细管电压下可得到稳定的锥射流。展开更多
基金National Basic Research Program of China (973 Program, 2012CB955604)Science-Technology Development Plan Project of Shandong Province (2008GG10008001)Key Subject of Shandong Meteorological Bureau (2009sdqxz11)
文摘Summer precipitation patterns of Shandong Province are relatively independent with regard to the whole eastern China region.To study the rules and causes of precipitation variations,three main climate modes-on the annual,seasonal,and climatic intra-seasonal oscillation(CISO) scales-are extracted using a harmonic analysis method based on daily precipitation of Shandong during 1965-2009 and multi-year averaged pentad precipitation at 722 stations in China during 1971-2000.Among the three precipitation climate modes,the annual mode is closely related to the annual cycle of Earth-Atmosphere thermal system,which is characterized by the periodic dry and wet seasons.The seasonal mode reflects the monsoon effect on precipitation and the main flood season's contribution to annual precipitation variations.As an important climatic signal,the CISO mode is more evident during summer monsoon.The gradual modulations of the CISO mode,seasonal mode,and annual mode control the annual variation of precipitation.To study the relationship between precipitation climate modes and atmospheric circulations,an East Asian Westerly Jet Index(EAWJI) is defined in this paper.It is revealed that precipitation of Shandong is closely related to EAWJI in all climate modes.A wet or dry phase of each climate mode corresponds to a specific atmospheric circulation pattern.The phase of the annual mode is reverse to that of EAWJI.During the wet phase of the seasonal mode(weak phase of EAWJI),the atmospheric circulation in and around Shandong is characterized by upper-level divergence and low-level convergence.A reversed atmospheric circulation exists for the dry phase(strong phase for EAWJI).In the summer wet phase of CISO mode(strong phase of EAWJI),Shandong is controlled by upper-level divergence and low-level convergence.Again,the dry phase is corresponding to a reversed circulation structure.The methodology employed in this research,i.e.studying the precipitation climatic variations in terms of independent components of different temporal scales,provides a new approach for annual and seasonal precipitation prediction.
基金supported by the National Natural Science Foundation of China Project (11002139)the China Postdoctoral Science Foundation (20100470854)
文摘Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the cone- jet configuration. The cone and the jet of aqueous solutions of polyethylene oxide (PEO) are formed from an orifice of a capillary tube under the electric field. The viscoelastic con- stitutive relationship of the PEO solution is measured and discussed. The phenomena owing to the jet instability are described, five flow modes and corresponding structures are obtained with variations of the fluid flow rate Q, the electric potential U and the distance h from the orifice of the cap- illary tube to the collector. The flow modes of the cone-jet configuration involves the steady bending mode, the rotat- ing bending mode, the swinging rotating mode, the blurring bending mode and the branching mode. Regimes in the Q-U plane of the flow modes are also obtained. These results may provide the fundamentals to predict the operating conditions expected in practical applications.
基金Supported by the National Natural Science Foundation of China,China(21522602,21776092,91534202,91534122,51673063,51672082)Basic Research Program of Shanghai,China(15JC1401300,17JC1402300)+2 种基金Social Development Program of Shanghai,China(17DZ1200900)Innovation Program of Shanghai Municipal Education Commission,ChinaFundamental Research Funds for the Central Universities,China(222201718002).
文摘The radial multiple jets-in-crossflow mixing structure(RMJCMS) is extensively used in industrial manufacture. In this research, the effects of thickness of injection ring on mixing performance and factors influencing the mixing performance of RMJCMS were discussed based on the results of computational fluid dynamics. The simulation results showed that the dimensionless mixing distance, with the increase of the thickness of injection ring, drops from 1.1 to 0.18 first and then increases to 0.27 while the uniformity of flux monotonously improves, manifesting that the consistency of flux is not the single element determining the mixing performance. Analyzing the simulation results, a conclusion was drawn that the consistency of flux, penetration mode and interaction among injection flows which can be altered by adjusting the thickness of injection ring, determine the mixing performance of RMJCMS jointly. That is to say, in RMJCMS an injection ring with a suitable thickness can realize the function of injection and rectification simultaneously, which not only improves the mixing performance but also reduces the complexity of RMJCMS as well.
基金Projects(51305450,51275521)supported by the National Natural Science Foundation of China
文摘Removal of brittle materials in the brittle or ductile mode inevitably causes damaged or strained surface layers containing cracks, scratches or dislocations. Within elastic deformation, the arrangement of each atom can be recovered back to its original position without any defects introduced. Based on surface hydroxylation and chemisorption theory, material removal mechanism of quartz glass in the elastic mode is analyzed to obtain defect-free surface. Elastic contact condition between nanoparticle and quartz glass surface is confirmed from the Hertz contact theory model. Atoms on the quartz glass surface are removed by chemical bond generated by impact reaction in the elastic mode, so no defects are generated without mechanical process. Experiment was conducted on a numerically controlled system for nanoparticle jet polishing, and one flat quartz glass was polished in the elastic mode. Results show that scratches on the sample surface are completely removed away with no mechanical defects introduced, and microroughness(Ra) is decreased from 1.23 nm to 0.47 nm. Functional group Ce — O — Si on ceria nanoparticles after polishing was detected directly and indirectly by FTIR, XRD and XPS spectra analysis from which the chemical impact reaction is validated.
基金Project supported by National Natural Science Foundation of China (51207027), Scien- tific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China.
文摘Electrical discharges in or in contact with liquid can produce H2O2effectively.However,wound treatment requires not only high energy yield,but also low temperature,stability,safety and reproducibility in H2O2generation.Thus a method of producing H2O2in saline solution reacting with He/H2O plasma jet is described in this paper.Two working modes(bullet and arc modes)are stable while keeping at low temperature in the H2O2production.The production is much faster under the arc mode,but has rather high production rate and energy efficiency under the bullet mode.Plus,the energy efficiency increases with treatment time and higher moist helium flow rate under both modes,but especially the bullet mode.Moreover,55 min after the plasma treatment,there is only 6%degradation of H2O2concentration in the saline solution,and this indicates the potential of He/H2O plasma jet in plasma pharmacy.
文摘JET has made unique contributions to the physics basis of ITER by virtue ofits ITER-like geometry, large plasma size and D-T capability. The paper discusses recent JET resultsand their implications for ITER in the areas of standard ELMy H-mode, D-T operation and advancedtokamak modes. In ELMy H-mode the separation of plasma energy into core and pedestal contributionsshows that core confinement scales like gyroBohm transport. High triangularity has a beneficialeffect on confinement and leads to an integrated plasma performance exceeding the ITER Q =10reference case. A revised type I ELM scaling predicts acceptable ELM energy losses for ITER, whileprogress in physics understanding of NTMs shows how to control them in ITER. The D-T experiments of1997 have validated ICRF scenarios for heating ITER/a reactor and identified ion minority schemes(e.g. (~3He)DT) with strong ion heating. They also show that the slowing down of alpha particles isclassical so that the self-heating by fusion alphas should cause no unexpected problems. With thePellet Enhanced Performance mode of 1988, JET has produced the first advanced tokamak mode, withpeaked pressure profiles sustained by reversed magnetic shear and strongly reduced transport. Morerecently, LHCD has provided easy tuning of reversed shear and reliable access to ITBs. Improvedphysics understanding shows that rational g-surfaces play a key role in the formation anddevelopment of ITBs. The demonstration of real time feedback control of plasma current and pressureprofiles opens the path towards fully controlled steady-state tokamak plasmas.
基金supported by the National Natural Science Foundation of China(11202024)
文摘This paper proposes a novel composite dual-control bycombing the integral sliding mode control (ISMC) method basedon the finite time convergence theory with extended state observer(ESO) for a tracking problem of a missile with tail fins and reactionjetcontrol system (RCS). First, the ISMC method based on finitetime convergence is utilized to design the control law of tail fins andthe pulse control of RCS for the dual-control system, ensuring thesystem with rapid response and high accuracy of tracking. Then,ESO is employed for the estimation of aerodynamic disturbancesinfluenced by the airflow of thruster jets. With the characteristicof high accuracy estimation of ESO, the chattering free trackingperformance of the attack angle command and the robustnessof the control law are achieved. Meanwhile, the stability of thedual-control system is analyzed based on finite time convergencestability theorem and Lyapunov’s theorem. Finally, numerical simulationsdemonstrate the effectiveness of the proposed design.
基金supported by National Natural Science Foundation of China(Nos.10805013,11375051)Funds for Distinguished Young Scientists of Hebei Province,China(No.A2012201045)+1 种基金Department of Education for Outstanding Youth Project of China(No.Y2011120)Youth Project of Hebei University of China(No.2011Q14)
文摘A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using optical and electrical methods,the discharge characteristics are investigated for the diffuse plasma plume.Results indicate that the discharge has a pulse characteristic,under the excitation of a DC voltage.The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode.It is found that,with an increment of the gas flow rate,both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode,reach their minima at about1.5 L/min,and then slightly increase in the turbulent mode.However,the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min,and then slightly decreases in the turbulent mode.
文摘为合理选择微型荷电喷雾燃烧器的结构设计和工作参数,基于新设计的微型毛细管电极–环形电极–网格双电极荷电喷雾燃烧器,开展液体燃料乙醇雾化实验研究,得出了稳定的锥–射流雾化工作模式。基于该工作模式,对双电极产生的电场强度进行理论计算,采用数值模拟的方法对流场和电场的耦合场进行分析求解,运用乙醇–空气两相流水平集方法模拟乙醇的流动。在体积流量为1 m L/h、毛细管电压4.19 k V、环形电极电压1 k V时得到了稳定的锥–射流、毛细管附近场强分布和两相流的速度场。经过理论计算得出了乙醇产生雾化的最小体积流量。研究表明:轴向场强和径向场强在锥射流内部均逐渐增大,在锥射流界面达到最大值后逐渐减小。由于射流的外侧速度矢量出现漩涡并沿分界面的切面方向运动,促进了锥射流的形成。当环形电极电压一定时,高于最小体积流量的乙醇在适合的毛细管电压下可得到稳定的锥射流。