逆向发动机常用于对飞行器进行减速或分离。为研究高空稀薄条件下逆向发动机喷流和自由来流的相互作用,构建了由两个逆向喷流和高超声速自由来流相互干扰形成的稀薄流场。通过直接模拟Monte Carlo(direct simulation Monte Carlo,DSMC)...逆向发动机常用于对飞行器进行减速或分离。为研究高空稀薄条件下逆向发动机喷流和自由来流的相互作用,构建了由两个逆向喷流和高超声速自由来流相互干扰形成的稀薄流场。通过直接模拟Monte Carlo(direct simulation Monte Carlo,DSMC)仿真发现在稀薄来流条件下会形成大面积相互干扰区,且该干扰区存在严重非定常流动现象。初步分析认为,该干扰区的范围和非定常演化过程与自由来流动能和逆向发动机喷流流量紧密相关。展开更多
The available studies in the literature on physical and mathematical modeling of the argon oxygen decarburization (AOD) process of stainless steel have briefly been reviewed. The latest advances made by the author wi...The available studies in the literature on physical and mathematical modeling of the argon oxygen decarburization (AOD) process of stainless steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was used to investigate the fluid flow and mixing characteristics in the bath of an 18 t AOD vessel, as well as the 'back attack' action of gas jets and its effects on the erosion and wear of the refractory lining, with sufficiently full kinematic similarity. The non rotating and rotating gas jets blown through two annular tuyeres, respectively of straight tube and spiral flat tube type, were employed in the experiments. The geometric similarity ratio between the model and its prototype (including the straight tube type tuyeres) was 1:3. The influences of the gas flow rate, the angle included between the two tuyeres and other operating parameters, and the suitability of the spiral tuyere as a practical application, were examined. These latest studies have clearly and successfully brought to light the fluid flow and mixing characteristics in the bath and the overall features of the back attack phenomena of gas jets during the blowing, and have offered a better understanding of the refining process. Besides, mathematical modeling for the refining process of stainless steel was carried out and a new mathematical model of the process was proposed and developed. The model performs the rate calculations of the refining and the mass and heat balances of the system. Also, the effects of the operating factors, including adding the slag materials, crop ends, and scrap, and alloy agents; the non isothermal conditions; the changes in the amounts of metal and slag during the refining; and other factors were all considered. The model was used to deal with and analyze the austenitic stainless steel making (including ultra low carbon steel) and was tested on data of 32 heats obtained in producing 304 grade steel in an 18 t AOD vessel. The changes in the bath composition and temperature during the refining process with time can be accurately predicted using this model. The model can provide some very useful information and a reliable basis for optimizing the process practice of the refining of stainless steel and control of the process in real time and online.展开更多
文摘逆向发动机常用于对飞行器进行减速或分离。为研究高空稀薄条件下逆向发动机喷流和自由来流的相互作用,构建了由两个逆向喷流和高超声速自由来流相互干扰形成的稀薄流场。通过直接模拟Monte Carlo(direct simulation Monte Carlo,DSMC)仿真发现在稀薄来流条件下会形成大面积相互干扰区,且该干扰区存在严重非定常流动现象。初步分析认为,该干扰区的范围和非定常演化过程与自由来流动能和逆向发动机喷流流量紧密相关。
文摘The available studies in the literature on physical and mathematical modeling of the argon oxygen decarburization (AOD) process of stainless steel have briefly been reviewed. The latest advances made by the author with his research group have been summarized. Water modeling was used to investigate the fluid flow and mixing characteristics in the bath of an 18 t AOD vessel, as well as the 'back attack' action of gas jets and its effects on the erosion and wear of the refractory lining, with sufficiently full kinematic similarity. The non rotating and rotating gas jets blown through two annular tuyeres, respectively of straight tube and spiral flat tube type, were employed in the experiments. The geometric similarity ratio between the model and its prototype (including the straight tube type tuyeres) was 1:3. The influences of the gas flow rate, the angle included between the two tuyeres and other operating parameters, and the suitability of the spiral tuyere as a practical application, were examined. These latest studies have clearly and successfully brought to light the fluid flow and mixing characteristics in the bath and the overall features of the back attack phenomena of gas jets during the blowing, and have offered a better understanding of the refining process. Besides, mathematical modeling for the refining process of stainless steel was carried out and a new mathematical model of the process was proposed and developed. The model performs the rate calculations of the refining and the mass and heat balances of the system. Also, the effects of the operating factors, including adding the slag materials, crop ends, and scrap, and alloy agents; the non isothermal conditions; the changes in the amounts of metal and slag during the refining; and other factors were all considered. The model was used to deal with and analyze the austenitic stainless steel making (including ultra low carbon steel) and was tested on data of 32 heats obtained in producing 304 grade steel in an 18 t AOD vessel. The changes in the bath composition and temperature during the refining process with time can be accurately predicted using this model. The model can provide some very useful information and a reliable basis for optimizing the process practice of the refining of stainless steel and control of the process in real time and online.