The scour process induced by plunging jets is an important topic for hydraulic engineers. In recent decades, several researchers have developed new strategies and methodologies to control the scour morphology, includi...The scour process induced by plunging jets is an important topic for hydraulic engineers. In recent decades, several researchers have developed new strategies and methodologies to control the scour morphology, including different jet arrangements and structures located in the stilling basin. It has been found that multiple jets can cause less scouring than single plunging jets. Based on this evidence, this study aimed to investigate the equilibrium morphology caused by multiple non-crossing jets. A dedicated laboratory model was built and experimental tests were carried out under different combinations of jet inclination angles, by varying the tailwater level and the virtual crossing point location, which was set below the original channel bed level. It was experimentally shown that the equilibrium scour morphology depends on the jet discharge, the differences in non-crossing jet inclination angles, the downstream water level, and the distance of the virtual crossing point from the original channel bed level. In particular, the last parameter was found to be one of the most influential parameters, because of the resulting flow patterns inside the water body. Furthermore, the analysis of experimental evidence allowed for a complete and detailed classification of the scour hole typologies. Three different scour typologies were distinguished and classified. Finally, based on previous studies, two novel re-lationships have been proposed to predict both the maximum scour depth and length within a large range of hydraulic and geometric parameters.展开更多
The drop structure will fail as a result of local scoring downstream.This paper discusses the influence of a drop structures' upstream slope to local scour.Empirical equations of the scour hole were developed by l...The drop structure will fail as a result of local scoring downstream.This paper discusses the influence of a drop structures' upstream slope to local scour.Empirical equations of the scour hole were developed by laboratory experiment,theoretical assumptions,and regression analysis.These equations include the maximum scour depth and length during the scouring period,the maximum equilibrium scour depth and length,and the unit width scour rate.The four channel slopes(0%,2%,4%,and 6%) before the drop structure has been included in the analysis.A series of laboratory experiments were conducted to obtain 48 groups of experiments and 419 scour hole profiles during the scouring period.The material used in the scour section is uniform non-cohesive and with a median diameter of d50 = 0.5 mm.The results have been used to develop empirical equations via regression analysis to determine the coefficients of theoretical equations.The high correlation coefficient indicates that the equations developed in this study are suitable for verifying the characteristics of a scour hole at drop structure in the sloped channel.The semi-empirical equation is more accurate than the empirical equation.Compared to a horizontal channel,a sloped channel tends to cause a greater equilibriummaximum scour length,shorter equilibrium maximum scour depth,and faster unit-wide scour rate.展开更多
文摘The scour process induced by plunging jets is an important topic for hydraulic engineers. In recent decades, several researchers have developed new strategies and methodologies to control the scour morphology, including different jet arrangements and structures located in the stilling basin. It has been found that multiple jets can cause less scouring than single plunging jets. Based on this evidence, this study aimed to investigate the equilibrium morphology caused by multiple non-crossing jets. A dedicated laboratory model was built and experimental tests were carried out under different combinations of jet inclination angles, by varying the tailwater level and the virtual crossing point location, which was set below the original channel bed level. It was experimentally shown that the equilibrium scour morphology depends on the jet discharge, the differences in non-crossing jet inclination angles, the downstream water level, and the distance of the virtual crossing point from the original channel bed level. In particular, the last parameter was found to be one of the most influential parameters, because of the resulting flow patterns inside the water body. Furthermore, the analysis of experimental evidence allowed for a complete and detailed classification of the scour hole typologies. Three different scour typologies were distinguished and classified. Finally, based on previous studies, two novel re-lationships have been proposed to predict both the maximum scour depth and length within a large range of hydraulic and geometric parameters.
基金the research support from Ministry of Science and Technology of Chinese Taipei,with the project no.104-2313-B-343-001
文摘The drop structure will fail as a result of local scoring downstream.This paper discusses the influence of a drop structures' upstream slope to local scour.Empirical equations of the scour hole were developed by laboratory experiment,theoretical assumptions,and regression analysis.These equations include the maximum scour depth and length during the scouring period,the maximum equilibrium scour depth and length,and the unit width scour rate.The four channel slopes(0%,2%,4%,and 6%) before the drop structure has been included in the analysis.A series of laboratory experiments were conducted to obtain 48 groups of experiments and 419 scour hole profiles during the scouring period.The material used in the scour section is uniform non-cohesive and with a median diameter of d50 = 0.5 mm.The results have been used to develop empirical equations via regression analysis to determine the coefficients of theoretical equations.The high correlation coefficient indicates that the equations developed in this study are suitable for verifying the characteristics of a scour hole at drop structure in the sloped channel.The semi-empirical equation is more accurate than the empirical equation.Compared to a horizontal channel,a sloped channel tends to cause a greater equilibriummaximum scour length,shorter equilibrium maximum scour depth,and faster unit-wide scour rate.