Two models are defined for predicting the trajectory of a foam jet originating from a fire monitor(hydrant)and the related intensity drop point.An experimental framework is also defined and used accordingly to compare...Two models are defined for predicting the trajectory of a foam jet originating from a fire monitor(hydrant)and the related intensity drop point.An experimental framework is also defined and used accordingly to compare real-time data with the predictions of such models.This mixed theoretical-experimental approach is proven to be effective for the determination of otherwise unknown coefficients which take into account several important factors such as the operation pressure,the elevation angle and the nozzle diameter.It is shown that the mean absolute error is smaller than 20%.展开更多
A new theoretical solution is presented here for the dynamic characteristics of a buoyant jet due to opposing small amplitude waves. The conservation equations of mass, tangential moment^n and vertical momentum are so...A new theoretical solution is presented here for the dynamic characteristics of a buoyant jet due to opposing small amplitude waves. The conservation equations of mass, tangential moment^n and vertical momentum are solved by the integral method which encompasses the Gaussian profiles of velocity and density. The action of waves is incorporated into the equations of motion as an external force and a new exact solution is obtained to predict the trajectory, velocity distribution and boundary thickness of the buoyant jet over an arbitrary lateral cross section. It is found that the velocity along the centerline is inversely proportional to the ratio of the momentum of the wave to the buoyant jet. The averaged bound- ary width varies with the fluctuation of the boundary width, the distance from the orifice and the velocity correction function. Owing to the motion of waves, the fluctuation of the boundary width is proportional to the wave steepness.展开更多
Spray performance downward the plain orifice injector was numerically simulated by using Fluent. The primary breakup and the secondary breakup were both focused. To capture the instantaneous interface of two-phase flo...Spray performance downward the plain orifice injector was numerically simulated by using Fluent. The primary breakup and the secondary breakup were both focused. To capture the instantaneous interface of two-phase flow and multiscale structure of liquid spray more accurately,an adaptive mesh refinement(AMR) method was adopted. Firstly,the velocity distribution and jet structure were obtained. Then,with different coupled VOF(Volume of Fluid)-DPM(Discrete Phase model)strategies,the jet trajectory,the column breakup point,and the time-average SMD distribution were analyzed and compared. Meanwhile,the experimental data and several empirical formulas were applied to verify the numerical value. The results suggested that the numerical simulation could accord well with experimental data and a certain formula.展开更多
Scientists have long debated the relative importance of tropospheric photochemical production versus stratospheric influx as causes of the springtime tropospheric ozone maximum over northern mid-latitudes. This paper ...Scientists have long debated the relative importance of tropospheric photochemical production versus stratospheric influx as causes of the springtime tropospheric ozone maximum over northern mid-latitudes. This paper investigates whether or not stratospheric intrusion and photochemistry play a significant role in the springtime ozone maximum over Northeast Asia, where ozone measurements are sparse. We examine how tropospheric ozone seasonalities over Naha (26°N, 128°E), Kagoshima (31°N, 131°E), and Pohang (36°N, 129°E), which are located on the same meridional line, are related to the timing and location of the jet stream. The ozone seasonality shows a gradual increase from January to the maximum ozone month, which corresponds to April at Naha, May at Kagoshima, and June at Pohang. In order to examine the occurrence of stratospheric intrusion, we analyze a correlation between jet stream activity and tropospheric ozone seasonality. From these analyses, we did not find any favorable evidence supporting the hypothesis that the springtime enhancement may result from stratospheric intrusion. According to trajectory analysis for vertical and horizontal origins of the airmass, a gradual increasing tendency in ozone amounts from January until the onset of monsoon was similar to the increasing ozone formation tendency from winter to spring over China's Mainland, which has been observed during the build-up of tropospheric ozone over Central Europe in the winter-spring transition period due to photochemistry. Overall, the analyses suggest that photochemistry is the most important contributor to observed ozone seasonality over Northeast Asia.展开更多
The experimental studies of the flaring gate pier applied on the surface spillway in a high-arch dam show that a shock-wave will appear when the pattern of the flow is kept as super-critical. Meanwhile, the water dept...The experimental studies of the flaring gate pier applied on the surface spillway in a high-arch dam show that a shock-wave will appear when the pattern of the flow is kept as super-critical. Meanwhile, the water depth at the outlet increases significantly, the flow moves downward in different directions, and the plunging jet is in a narrow and long shape, with a full longitudinal diffusion. In addition, the variation of the flaring gate pier design parameters affects little the discharge capacity of the surface spillway, these parameters including the contraction ratio fl, the contraction angle c~ and the spillway chute angle O. The pressure on the bottom of the spillway increases along the way and reaches the maximum before the outlet, and then decreases rapidly. Due to the flow impacting, the pressure on both sidewalls increases abruptly at the turning line of the flaring gate pier. To see the characteristics of the flow in the flaring gate pier, a simple calculation method is suggested based on the conversation of energy and mass, and the calculation methods for the jet trajectory and the horizontal length in air are also proposed. The results are found in good agreement with experimental data.展开更多
The flow choking may occur for weir flow slit-type flip buckets trader common operation conditions. An estimation method is developed through introducing a comprehensive coefficient to determine the approach flow Frou...The flow choking may occur for weir flow slit-type flip buckets trader common operation conditions. An estimation method is developed through introducing a comprehensive coefficient to determine the approach flow Froude number for the flow choking to occur in those flip buckets. The error of the present method relative to the experimental data is less than 5%. The results show that, the Froude number for the flow choking to occur is related to the contraction ratio and the contraction angle of the flip buckets. When the flow choking occurs, the upper jet trajectory decreases and the lower one is almost not affected, and the dynamic pressures on the bottom and the sidewalls increase due to the flow profile rising on the flip buckets.展开更多
With respect to the crest spillway with large unit discharge and low Froude number, the hydraulics of the slit-type energy dissipater at the outlet should be noticed due to the complicated flow regimes. In the present...With respect to the crest spillway with large unit discharge and low Froude number, the hydraulics of the slit-type energy dissipater at the outlet should be noticed due to the complicated flow regimes. In the present paper, some issues about hydraulic characteristics were experimentally investigated by means of five slit-type outlets and four tetrahedrons, including the flow choking, impact to river banks and jet trajectory. The main findings are as follows. The critical Froude number for the flow choking decreases with increasing outlet width of the slit-type energy dissipater. If the flow Froude number is expressed by the parameters just before this energy dissipater, the tetrahedron placed inside the side wall of the outlet could efficiently avoid the flow impact to the river bank of same side, and compared with the jet trajectory of the slit-type energy dissipater, the outlet with tetrahedron has different trajectory trend, i.e., the distance of the jet trajectory decreases with the increase of the water head due to special form of the outlet tetrahedron.展开更多
Experimental results showed that aerators increase the energy dissipation of the flow in the channel by reducing the velocity coefficient φ in the deflector bucket and the jet trajectory length, by increasing en...Experimental results showed that aerators increase the energy dissipation of the flow in the channel by reducing the velocity coefficient φ in the deflector bucket and the jet trajectory length, by increasing energy dissipation of the jet flow in the air and the diffusion length of the jet falling into the pool and by reducing the energy intensity of the jet falling into the pool. The energy dissipation prevents wash out downstream.When air is not entrained in the water flow, the aerators act as artificial irregularities in the channel. The energy dissipation due to the aerators in the channel without entrained air is greater than when air is entrained in the water flow.Correlations of the experimental data can be used to estimate the energy dissipation effect of the aerators on the outlet structure for the three test cases.展开更多
基金the National Key Research and Development Plan(Grant No.2016YFC0801300).
文摘Two models are defined for predicting the trajectory of a foam jet originating from a fire monitor(hydrant)and the related intensity drop point.An experimental framework is also defined and used accordingly to compare real-time data with the predictions of such models.This mixed theoretical-experimental approach is proven to be effective for the determination of otherwise unknown coefficients which take into account several important factors such as the operation pressure,the elevation angle and the nozzle diameter.It is shown that the mean absolute error is smaller than 20%.
文摘A new theoretical solution is presented here for the dynamic characteristics of a buoyant jet due to opposing small amplitude waves. The conservation equations of mass, tangential moment^n and vertical momentum are solved by the integral method which encompasses the Gaussian profiles of velocity and density. The action of waves is incorporated into the equations of motion as an external force and a new exact solution is obtained to predict the trajectory, velocity distribution and boundary thickness of the buoyant jet over an arbitrary lateral cross section. It is found that the velocity along the centerline is inversely proportional to the ratio of the momentum of the wave to the buoyant jet. The averaged bound- ary width varies with the fluctuation of the boundary width, the distance from the orifice and the velocity correction function. Owing to the motion of waves, the fluctuation of the boundary width is proportional to the wave steepness.
基金supported by the National Natural Science Foundation of China(No. 91741118)
文摘Spray performance downward the plain orifice injector was numerically simulated by using Fluent. The primary breakup and the secondary breakup were both focused. To capture the instantaneous interface of two-phase flow and multiscale structure of liquid spray more accurately,an adaptive mesh refinement(AMR) method was adopted. Firstly,the velocity distribution and jet structure were obtained. Then,with different coupled VOF(Volume of Fluid)-DPM(Discrete Phase model)strategies,the jet trajectory,the column breakup point,and the time-average SMD distribution were analyzed and compared. Meanwhile,the experimental data and several empirical formulas were applied to verify the numerical value. The results suggested that the numerical simulation could accord well with experimental data and a certain formula.
基金supported by Research Agency for Climate Science funded by Korea Meteorological Administration(RACS 2010-1011)
文摘Scientists have long debated the relative importance of tropospheric photochemical production versus stratospheric influx as causes of the springtime tropospheric ozone maximum over northern mid-latitudes. This paper investigates whether or not stratospheric intrusion and photochemistry play a significant role in the springtime ozone maximum over Northeast Asia, where ozone measurements are sparse. We examine how tropospheric ozone seasonalities over Naha (26°N, 128°E), Kagoshima (31°N, 131°E), and Pohang (36°N, 129°E), which are located on the same meridional line, are related to the timing and location of the jet stream. The ozone seasonality shows a gradual increase from January to the maximum ozone month, which corresponds to April at Naha, May at Kagoshima, and June at Pohang. In order to examine the occurrence of stratospheric intrusion, we analyze a correlation between jet stream activity and tropospheric ozone seasonality. From these analyses, we did not find any favorable evidence supporting the hypothesis that the springtime enhancement may result from stratospheric intrusion. According to trajectory analysis for vertical and horizontal origins of the airmass, a gradual increasing tendency in ozone amounts from January until the onset of monsoon was similar to the increasing ozone formation tendency from winter to spring over China's Mainland, which has been observed during the build-up of tropospheric ozone over Central Europe in the winter-spring transition period due to photochemistry. Overall, the analyses suggest that photochemistry is the most important contributor to observed ozone seasonality over Northeast Asia.
基金the National Natural Science Foundation of China (Grant Nos. 50909067, 51009102)the Program for New Century Excellent Talents in University (Grant No. 2011SCU-NCET-10-0589)
文摘The experimental studies of the flaring gate pier applied on the surface spillway in a high-arch dam show that a shock-wave will appear when the pattern of the flow is kept as super-critical. Meanwhile, the water depth at the outlet increases significantly, the flow moves downward in different directions, and the plunging jet is in a narrow and long shape, with a full longitudinal diffusion. In addition, the variation of the flaring gate pier design parameters affects little the discharge capacity of the surface spillway, these parameters including the contraction ratio fl, the contraction angle c~ and the spillway chute angle O. The pressure on the bottom of the spillway increases along the way and reaches the maximum before the outlet, and then decreases rapidly. Due to the flow impacting, the pressure on both sidewalls increases abruptly at the turning line of the flaring gate pier. To see the characteristics of the flow in the flaring gate pier, a simple calculation method is suggested based on the conversation of energy and mass, and the calculation methods for the jet trajectory and the horizontal length in air are also proposed. The results are found in good agreement with experimental data.
基金Project supported by the National Natural Science Foundation of China(Grant No.51179056)the PAPD(Grant No.3014-SYS1401)the Fundamental Research Funds for the Central Universities of China(Grant No.2014B03114)
文摘The flow choking may occur for weir flow slit-type flip buckets trader common operation conditions. An estimation method is developed through introducing a comprehensive coefficient to determine the approach flow Froude number for the flow choking to occur in those flip buckets. The error of the present method relative to the experimental data is less than 5%. The results show that, the Froude number for the flow choking to occur is related to the contraction ratio and the contraction angle of the flip buckets. When the flow choking occurs, the upper jet trajectory decreases and the lower one is almost not affected, and the dynamic pressures on the bottom and the sidewalls increase due to the flow profile rising on the flip buckets.
基金Project supported by the National Natural Science Foundation of China(Grant No.51179056)
文摘With respect to the crest spillway with large unit discharge and low Froude number, the hydraulics of the slit-type energy dissipater at the outlet should be noticed due to the complicated flow regimes. In the present paper, some issues about hydraulic characteristics were experimentally investigated by means of five slit-type outlets and four tetrahedrons, including the flow choking, impact to river banks and jet trajectory. The main findings are as follows. The critical Froude number for the flow choking decreases with increasing outlet width of the slit-type energy dissipater. If the flow Froude number is expressed by the parameters just before this energy dissipater, the tetrahedron placed inside the side wall of the outlet could efficiently avoid the flow impact to the river bank of same side, and compared with the jet trajectory of the slit-type energy dissipater, the outlet with tetrahedron has different trajectory trend, i.e., the distance of the jet trajectory decreases with the increase of the water head due to special form of the outlet tetrahedron.
文摘Experimental results showed that aerators increase the energy dissipation of the flow in the channel by reducing the velocity coefficient φ in the deflector bucket and the jet trajectory length, by increasing energy dissipation of the jet flow in the air and the diffusion length of the jet falling into the pool and by reducing the energy intensity of the jet falling into the pool. The energy dissipation prevents wash out downstream.When air is not entrained in the water flow, the aerators act as artificial irregularities in the channel. The energy dissipation due to the aerators in the channel without entrained air is greater than when air is entrained in the water flow.Correlations of the experimental data can be used to estimate the energy dissipation effect of the aerators on the outlet structure for the three test cases.