BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term...BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term PPI use and higher risks for various adverse health outcomes,including greater mortality.AIM To investigate the association between PPI use and all-cause mortality among cancer patients by a comprehensive analysis after adjustment for various confounders and a robust methodological approach to minimize bias.METHODS This retrospective cohort study used data from the TriNetX research network,with electronic health records from multiple healthcare organizations.The study employed a new-user,active comparator design,which compared newly treated PPI users with non-users and newly treated histamine2 receptor antagonists(H2RA)users among adult cancer patients.Newly prescribed PPIs(esomeprazole,lansoprazole,omeprazole,pantoprazole,or rabeprazole)users were compared to non-users or newly prescribed H2RAs(cimetidine,famotidine,nizatidine,or ranitidine)users.The primary outcome was all-cause mortality.Each patient in the main group was matched to a patient in the control group using 1:1 propensity score matching to reduce confounding effects.Multivariable Cox regression models were used to estimate hazard ratios(HRs)and 95% confidence interval(CI).RESULTS During the follow-up period(median 5.4±1.8 years for PPI users and 6.5±1.0 years for non-users),PPI users demonstrated a higher all-cause mortality rate than non-users after 1 year,2 years,and at the end of follow up(HRs:2.34-2.72).Compared with H2RA users,PPI users demonstrated a higher rate of all-cause mortality HR:1.51(95%CI:1.41-1.69).Similar results were observed across sensitivity analyses by excluding deaths from the first 9 months and 1-year post-exposure,confirming the robustness of these findings.In a sensitivity analysis,we analyzed all-cause mortality outcomes between former PPI users and individuals who have never used PPIs,providing insights into the long-term effects of past PPI use.In addition,at 1-year follow-up,the analysis revealed a significant difference in mortality rates between former PPI users and non-users(HR:1.84;95%CI:1.82-1.96).CONCLUSION PPI use among cancer patients was associated with a higher risk of all-cause mortality compared to non-users or H2RA users.These findings emphasize the need for cautious use of PPIs in cancer patients and suggest that alternative treatments should be considered when clinically feasible.However,further studies are needed to corroborate our findings,given the significant adverse outcomes in cancer patients.展开更多
Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PP...Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PPIs)are the primary drugs used to treat acid-related diseases.They are also commonly prescribed to patients with IBD.Recent studies have suggested a potential association between the use of certain medications,such as PPIs,and the occurrence and progression of IBD.In this review,we summarize the potential impact of PPIs on IBD and analyze the underlying mechanisms.Our findings may provide insights for conducting further investigations into the effects of PPIs on IBD and serve as an important reminder for physicians to exercise caution when prescribing PPIs to patients with IBD.展开更多
As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
China has embarked on an extensive and sustained endeavor to harness its coal resources for a substantial period.However,the depletion of coal reserves in mining regions has necessitated the closure or abandonment of ...China has embarked on an extensive and sustained endeavor to harness its coal resources for a substantial period.However,the depletion of coal reserves in mining regions has necessitated the closure or abandonment of numerous mines,resulting in a marked increase in the number of such facilities.Parallel to this,China is vigorously advancing the development of a novel energy power system,aimed at transitioning the power sector from a high-carbon,fossil fuel-dependent paradigm to a low-carbon,clean energy footing.展开更多
We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave ...We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.展开更多
This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this m...This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.展开更多
We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated het...We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.展开更多
During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent...During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent pumping,water storage and other dynamic disturbances.The stability of the abandoned mine surrounding rock body is the basis for guaranteeing the safety and effectiveness of water storage in the underground space of the abandoned mine.By considering the two main factors of different stress levels and disturbance amplitudes,the mechanical properties,damage characteristics and acoustic emission characteristics of the abandoned mine perimeter rock body under dynamic disturbance were investigated using a creep-disturbed dynamic impact loading system.The experimental results show that:1)The stress level is considered to be the major contributing factor of the failure of muddy sandstone,followed by the amplitude of the disturbances;2)The time required for the destruction of muddy sandstone decreases with the increase of amplitude.When the stress level is 80%,the sandstone specimens have a decreasing number of cycles as the disturbance amplitude increases.The disturbance amplitude is sequentially increased from 4 MPa to 5,6,7,and 8 MPa,the number of cycles required for specimen destruction decreases significantly by 96.71%,99.13%,99.60%,and 99.93%,respectively;3)Disturbance amplitude and stress level have a significant effect on muddy sandstone damage and damage occurs only after a certain threshold is reached.With the increase of stress level and disturbance amplitude,the macroscopic damage of muddy sandstone is mainly conical,with obvious flake spalling and poor damage integrity;4)According to the time-dependent changes in AE energy and ringing counts,the acoustic emission activity during the failure process could be divided into three phases,namely,weakening period,smooth period,and surge period,corresponding to the compaction phase,elastic rise phase and post-peak damage phase.The research results are of reference significance for the damage evolution analysis of muddy sandstone under dynamic disturbance and the safety and stability of abandoned mine perimeter rock body.展开更多
The fluid’s viscosity significantly affects the performance of a centrifugal pump.The entropy production method and leakage are employed to analyze the performance changes under various viscosities by numerical simul...The fluid’s viscosity significantly affects the performance of a centrifugal pump.The entropy production method and leakage are employed to analyze the performance changes under various viscosities by numerical simulation and validated by experiments.The results showed that increasing viscosity reduces both the pump head and efficiency.In addition,the optimal operating point shifts to the left.Leakage is influenced by vortex distribution in the front chamber and boundary layer thickness in wear-ring clearance,leading to an initial increase and subsequent decrease in leakage with increasing viscosity.The total entropy production Spro,Total inside the pump rises with increasing viscosity.The different mechanisms dominate under varying conditions:Turbulent dissipation dominates at low viscosity.Under high-viscosity conditions,energy loss is primarily caused by direct dissipation Spro,D and wall entropy production Spro,W.This study provides a deeper and more objective understanding of the energy characteristics of centrifugal pumps handling fluids of various viscosity,potentially aiding in optimizing pump design and improving energy conversion efficiency.展开更多
Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning p...Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.展开更多
The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structur...The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.展开更多
In order to obtain the transient characteristics of a low-speed centrifugal pump during the start-up and shutdown stages,dedicated experimental tests were conducted with eight different valve opening conditions.The Pe...In order to obtain the transient characteristics of a low-speed centrifugal pump during the start-up and shutdown stages,dedicated experimental tests were conducted with eight different valve opening conditions.The Pearson correlation coefficient was used to reveal the linear correlation between variables.According to the results,the stable rotational speed decreases with increasing valve opening(rotational speed decreases from approximately 1472 to 1453 r/min),while the stable shaft power exhibits an increasing trend(shaft power increases from approximately 0.242 to 0.390 kW).The stable time and zeroing time of each parameter during start-up and shutdown processes vary,with the flow zeroing time significantly increasing with the relative flow,reaching up to 10.468 s,while the shaft power zeroing time is roughly between 1.219 and 1.375 s.The results demonstrate that with increasing valve opening,the stable and zeroing time of flow significantly increase(|r|greater than 0.95),while the stable and zeroing time of rotational speed,power,and head display a smaller sensitivity on the valve opening(|r|less than 0.6).展开更多
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ...Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.展开更多
Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this wo...Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.展开更多
BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitor...BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitors(PPIs)are considered the referring medications for GERD.Nevertheless,PPIs must be managed carefully because their use,especially chronic,could be linked with some adverse effects.An effective and safe alternative pharmacological tool for GERD is needed.After the identification of potentially new medications to flank PPIs,it is mandatory to revise and improve good clinical practices even through a consensus process.AIM To optimize diagnosis and treatment guidelines for GERD through a consensus based on Delphi method.METHODS The availability of clinical studies describing the action of the multicomponent/multitarget medication Nux vomica-Heel,subject of the consensus,is the basic prerequisite for the consensus itself.A modified Delphi process was used to reach a consensus among a panel of Italian GERD specialists on the overlapping approach PPIs/Nux vomica-Heel as a new intervention model for the management of GERD.The Voting Consensus group was composed of 49 Italian Medical Doctors with different specializations:Gastroenterology,otolaryngology,geriatrics,and general medicine.A scientific committee analyzed the literature,determined areas that required investigation(in agreement with the multiple-choice questionnaire results),and identified two topics of interest:(1)GERD disease;and(2)GERD treatment.Statements for each of these topics were then formulated and validated.The Delphi process involved two rounds of questioning submitted to the panel experts using an online platform.RESULTS According to their routinary GERD practice and current clinical evidence,the panel members provided feedback to each questionnaire statement.The experts evaluated 15 statements and reached consensus on all 15.The statements regarding the GERD disease showed high levels of agreement,with consensus ranging from 70%to 92%.The statements regarding the GERD treatment also showed very high levels of agreement,with consensus ranging from 90%to 100%.This Delphi process was able to reach consensus among physicians in relevant aspects of GERD management,such as the adoption of a new approach to treat patients with GERD based on the overlapping between PPIs and Nux vomica-Heel.The consensus was unanimous among the physicians with different specializations,underlying the uniqueness of the agreement reached to identify in the overlapping approach between PPIs and Nux vomica-Heel a new intervention model for GERD management.The results support that an effective approach to deprescribe PPIs through a progressive decalage timetable(reducing PPIs administration to as-needed use),should be considered.CONCLUSION Nux vomica-Heel appears to be a valid opportunity for GERD treatment to favor the deprescription of PPIs and to maintain low disease activity together with the symptomatology remission.展开更多
A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigat...A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance.展开更多
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency ...Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.展开更多
The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristi...The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.展开更多
文摘BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term PPI use and higher risks for various adverse health outcomes,including greater mortality.AIM To investigate the association between PPI use and all-cause mortality among cancer patients by a comprehensive analysis after adjustment for various confounders and a robust methodological approach to minimize bias.METHODS This retrospective cohort study used data from the TriNetX research network,with electronic health records from multiple healthcare organizations.The study employed a new-user,active comparator design,which compared newly treated PPI users with non-users and newly treated histamine2 receptor antagonists(H2RA)users among adult cancer patients.Newly prescribed PPIs(esomeprazole,lansoprazole,omeprazole,pantoprazole,or rabeprazole)users were compared to non-users or newly prescribed H2RAs(cimetidine,famotidine,nizatidine,or ranitidine)users.The primary outcome was all-cause mortality.Each patient in the main group was matched to a patient in the control group using 1:1 propensity score matching to reduce confounding effects.Multivariable Cox regression models were used to estimate hazard ratios(HRs)and 95% confidence interval(CI).RESULTS During the follow-up period(median 5.4±1.8 years for PPI users and 6.5±1.0 years for non-users),PPI users demonstrated a higher all-cause mortality rate than non-users after 1 year,2 years,and at the end of follow up(HRs:2.34-2.72).Compared with H2RA users,PPI users demonstrated a higher rate of all-cause mortality HR:1.51(95%CI:1.41-1.69).Similar results were observed across sensitivity analyses by excluding deaths from the first 9 months and 1-year post-exposure,confirming the robustness of these findings.In a sensitivity analysis,we analyzed all-cause mortality outcomes between former PPI users and individuals who have never used PPIs,providing insights into the long-term effects of past PPI use.In addition,at 1-year follow-up,the analysis revealed a significant difference in mortality rates between former PPI users and non-users(HR:1.84;95%CI:1.82-1.96).CONCLUSION PPI use among cancer patients was associated with a higher risk of all-cause mortality compared to non-users or H2RA users.These findings emphasize the need for cautious use of PPIs in cancer patients and suggest that alternative treatments should be considered when clinically feasible.However,further studies are needed to corroborate our findings,given the significant adverse outcomes in cancer patients.
文摘Inflammatory bowel disease(IBD)is believed to be caused by various factors,including abnormalities in disease susceptibility genes,environmental factors,immune factors,and intestinal bacteria.Proton pump inhibitors(PPIs)are the primary drugs used to treat acid-related diseases.They are also commonly prescribed to patients with IBD.Recent studies have suggested a potential association between the use of certain medications,such as PPIs,and the occurrence and progression of IBD.In this review,we summarize the potential impact of PPIs on IBD and analyze the underlying mechanisms.Our findings may provide insights for conducting further investigations into the effects of PPIs on IBD and serve as an important reminder for physicians to exercise caution when prescribing PPIs to patients with IBD.
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
文摘China has embarked on an extensive and sustained endeavor to harness its coal resources for a substantial period.However,the depletion of coal reserves in mining regions has necessitated the closure or abandonment of numerous mines,resulting in a marked increase in the number of such facilities.Parallel to this,China is vigorously advancing the development of a novel energy power system,aimed at transitioning the power sector from a high-carbon,fossil fuel-dependent paradigm to a low-carbon,clean energy footing.
基金Nanjing University of Posts and Telecommunications Foundation(Grant Nos.JUH219002 and JUH219007)Key Laboratory of Functional Crystals and Laser Technology,TIPC,CAS Foundation(Grant No.FCLT 202201)。
文摘We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.
基金Funding by Ministerium für Wirtschaft,Innovation,Digitalisierung und Energie des Landes Nordrhein-Westfalen。
文摘This contribution presents a novel wear dependent virtual flow rate sensor for single stage single lobe progressing cavity pumps. We study the wear-induced material loss of the pump components and the impact of this material loss on the volumetric efficiency. The results are combined with an established backflow model to implement a backflow calculation procedure that is adaptive to wear. We use a laboratory test setup with a highly abrasive fluid and operate a pump from new to worn condition to validate our approach. The obtained measurement data show that the presented virtual sensor is capable of calculating the flow rate of a pump being subject to wear during its regular operation.
基金Project supported by the National Natural Science Foundation of China(NSFC)(Grant No.12004309)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSQ036)the Scientific Research Program funded by Shaanxi Provincial Education Department(Grant No.20JK0947).
文摘We show that the nonlinear stage of the dual-wavelength pumped modulation instability(MI)in nonlinear Schrödinger equation(NLSE)can be effectively analyzed by mode truncation methods.The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves.Significantly,the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure.It is demonstrated that there has much richer dynamic behavior,in contrast to the nonlinear waves reported before.This novel nonlinear wave promises to inject new vitality into the study of MI.
基金Project(52204101)supported by the National Natural Science Foundation of ChinaProject(ZR2022QE137)supported by the Natural Science Foundation of Shandong Province,ChinaProject(SKLGDUEK2023)supported by the Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in China University of Mining&Technology,Beijing,China。
文摘During the construction and operation of the abandoned mine pumped storage power station,the underground space surrounding rock body faces the complex stress environment under the action of mining disturbance,frequent pumping,water storage and other dynamic disturbances.The stability of the abandoned mine surrounding rock body is the basis for guaranteeing the safety and effectiveness of water storage in the underground space of the abandoned mine.By considering the two main factors of different stress levels and disturbance amplitudes,the mechanical properties,damage characteristics and acoustic emission characteristics of the abandoned mine perimeter rock body under dynamic disturbance were investigated using a creep-disturbed dynamic impact loading system.The experimental results show that:1)The stress level is considered to be the major contributing factor of the failure of muddy sandstone,followed by the amplitude of the disturbances;2)The time required for the destruction of muddy sandstone decreases with the increase of amplitude.When the stress level is 80%,the sandstone specimens have a decreasing number of cycles as the disturbance amplitude increases.The disturbance amplitude is sequentially increased from 4 MPa to 5,6,7,and 8 MPa,the number of cycles required for specimen destruction decreases significantly by 96.71%,99.13%,99.60%,and 99.93%,respectively;3)Disturbance amplitude and stress level have a significant effect on muddy sandstone damage and damage occurs only after a certain threshold is reached.With the increase of stress level and disturbance amplitude,the macroscopic damage of muddy sandstone is mainly conical,with obvious flake spalling and poor damage integrity;4)According to the time-dependent changes in AE energy and ringing counts,the acoustic emission activity during the failure process could be divided into three phases,namely,weakening period,smooth period,and surge period,corresponding to the compaction phase,elastic rise phase and post-peak damage phase.The research results are of reference significance for the damage evolution analysis of muddy sandstone under dynamic disturbance and the safety and stability of abandoned mine perimeter rock body.
基金supported by the National Natural Science Foundation of China(Grant Nos.52079058 and 52209113)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20230011 and BK20220544)+1 种基金China Postdoctoral Science Foundation(Grant No.2023M731367)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_3698).
文摘The fluid’s viscosity significantly affects the performance of a centrifugal pump.The entropy production method and leakage are employed to analyze the performance changes under various viscosities by numerical simulation and validated by experiments.The results showed that increasing viscosity reduces both the pump head and efficiency.In addition,the optimal operating point shifts to the left.Leakage is influenced by vortex distribution in the front chamber and boundary layer thickness in wear-ring clearance,leading to an initial increase and subsequent decrease in leakage with increasing viscosity.The total entropy production Spro,Total inside the pump rises with increasing viscosity.The different mechanisms dominate under varying conditions:Turbulent dissipation dominates at low viscosity.Under high-viscosity conditions,energy loss is primarily caused by direct dissipation Spro,D and wall entropy production Spro,W.This study provides a deeper and more objective understanding of the energy characteristics of centrifugal pumps handling fluids of various viscosity,potentially aiding in optimizing pump design and improving energy conversion efficiency.
基金Project(202208340045)supported by the China Scholarship Council FundProject(U21A20110)supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China+1 种基金Project(EUCMR202201)supported by the Open Project Program of Anhui Engineering Research Center of Exploitation and Utilization of Closed/abandoned Mine Resources,ChinaProject(2023cxcyzx063)supported by the Anhui Province New Era Talent Education Project,China。
文摘Within the framework of achieving carbon neutrality,various industries are confronted with fresh challenges.The ongoing process of downsizing coal industry operations has evolved into a new phase,with the burgeoning proliferation of abandoned mines posing a persistent issue.Addressing the challenges and opportunities presented by these abandoned mines,this paper advocates for a scientific approach centered on the advancement of pumped storage energy alongside gas-oil complementary energy.Leveraging abandoned mine tunnels to establish pumped storage power stations holds significant ecological and economic importance for repurposing these sites.This initiative not only serves as an effective means to restore the ecological balance in mining regions but also provides an environmentally friendly approach to repurposing abandoned mine tunnels,offering a blueprint for economically viable pumped storage power stations.This article delineates five crucial scientific considerations and outlines seven primary models for the utilization of abandoned mine sites,delineating a novel,comprehensive pathway for energy and power development that emphasizes multi-energy complementarity and synergistic optimization within abandoned mines.
基金National Key Research and De-velopment Program of China(Grant No.2023YFA1406603)the National Natural Science Foundation of China(Grant Nos.52071079,12274071,12374112,and T2394473)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB491).
文摘The spin pumping effect in magnetic heterostructures and multilayers is a highly effective method for the generationand transmission of spin currents. In the increasingly prominent synthetic antiferromagnetic structures, the two ferromagneticlayers demonstrate in-phase and out-of-phase states, corresponding to acoustic and optical precession modes. Withinthis context, our study explores the spin pumping effect in Py/Ru/Py synthetic antiferromagnetic structures across differentmodes. The heightened magnetic damping resulting from the spin pumping effect in the in-phase state initially decreaseswith increasing Py thickness before stabilizing. Conversely, in the out-of-phase state, the amplified damping exceeds thatof the in-phase state, suggesting a greater spin relaxation within this configuration, which demonstrates sensitivity to alterationsin static exchange interactions. These findings contribute to advancing the application of synthetic antiferromagneticstructures in magnonic devices.
基金supported by Science and Technology Project of Quzhou(Grant Nos.2023K256,2023NC08)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZY21E050001)Hunan Province Key Field R&D Plan Project(Grant No.2022GK2068).
文摘In order to obtain the transient characteristics of a low-speed centrifugal pump during the start-up and shutdown stages,dedicated experimental tests were conducted with eight different valve opening conditions.The Pearson correlation coefficient was used to reveal the linear correlation between variables.According to the results,the stable rotational speed decreases with increasing valve opening(rotational speed decreases from approximately 1472 to 1453 r/min),while the stable shaft power exhibits an increasing trend(shaft power increases from approximately 0.242 to 0.390 kW).The stable time and zeroing time of each parameter during start-up and shutdown processes vary,with the flow zeroing time significantly increasing with the relative flow,reaching up to 10.468 s,while the shaft power zeroing time is roughly between 1.219 and 1.375 s.The results demonstrate that with increasing valve opening,the stable and zeroing time of flow significantly increase(|r|greater than 0.95),while the stable and zeroing time of rotational speed,power,and head display a smaller sensitivity on the valve opening(|r|less than 0.6).
基金supported by a Grant(2024-MOIS35-005)of Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation funded by Ministry of Interior and Safety(MOIS,Korea).
文摘Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.
基金Project(8212033)supported by the Natural Science Foundation of Beijing,ChinaProject(BBJ2023051)supported by the Fundamental Research Funds of China University of Mining and Technology-BeijingProject(SKLGDUEK202221)supported by the Innovation Fund Research Project,China。
文摘Every year in China,a significant number of mines are closed or abandoned.The pumped hydroelectric storage(PHS)and geothermal utilization are vital means to efficiently repurpose resources in abandoned mine.In this work,the development potentials of the PHS and geothermal utilization systems were evaluated.Considering the geological conditions and meteorological data available of Jiahe abandoned mine,a simple evaluation model for PHS and geothermal utilization was established.The average efficiency of the PHS system exceeds 70%and the regulatable energy of a unit volume is over 1.53 kW·h/m^(3).The PHS system achieves optimal performance when the wind/solar power ratio reaches 0.6 and 0.3 in daily and year scale,respectively.In the geothermal utilization system,the outlet temperature and heat production are significantly affected by the injection flow rate.The heat production performance is more stable at lower rate flow,and the proportion of heat production is higher in the initial stage at greater flow rate.As the operating time increases,the proportion of heat production gradually decreases.The cyclic heat storage status has obvious advantages in heat generation and cooling.Furthermore,the energy-saving and emission reduction benefits of PHS and geothermal utilization systems were calculated.
文摘BACKGROUND Gastro-esophageal reflux disease(GERD)may affect the upper digestive tract;up to 20%of population in Western nations are affected by GERD.Antacids,histamine H2-receptor antagonists,and Proton Pump Inhibitors(PPIs)are considered the referring medications for GERD.Nevertheless,PPIs must be managed carefully because their use,especially chronic,could be linked with some adverse effects.An effective and safe alternative pharmacological tool for GERD is needed.After the identification of potentially new medications to flank PPIs,it is mandatory to revise and improve good clinical practices even through a consensus process.AIM To optimize diagnosis and treatment guidelines for GERD through a consensus based on Delphi method.METHODS The availability of clinical studies describing the action of the multicomponent/multitarget medication Nux vomica-Heel,subject of the consensus,is the basic prerequisite for the consensus itself.A modified Delphi process was used to reach a consensus among a panel of Italian GERD specialists on the overlapping approach PPIs/Nux vomica-Heel as a new intervention model for the management of GERD.The Voting Consensus group was composed of 49 Italian Medical Doctors with different specializations:Gastroenterology,otolaryngology,geriatrics,and general medicine.A scientific committee analyzed the literature,determined areas that required investigation(in agreement with the multiple-choice questionnaire results),and identified two topics of interest:(1)GERD disease;and(2)GERD treatment.Statements for each of these topics were then formulated and validated.The Delphi process involved two rounds of questioning submitted to the panel experts using an online platform.RESULTS According to their routinary GERD practice and current clinical evidence,the panel members provided feedback to each questionnaire statement.The experts evaluated 15 statements and reached consensus on all 15.The statements regarding the GERD disease showed high levels of agreement,with consensus ranging from 70%to 92%.The statements regarding the GERD treatment also showed very high levels of agreement,with consensus ranging from 90%to 100%.This Delphi process was able to reach consensus among physicians in relevant aspects of GERD management,such as the adoption of a new approach to treat patients with GERD based on the overlapping between PPIs and Nux vomica-Heel.The consensus was unanimous among the physicians with different specializations,underlying the uniqueness of the agreement reached to identify in the overlapping approach between PPIs and Nux vomica-Heel a new intervention model for GERD management.The results support that an effective approach to deprescribe PPIs through a progressive decalage timetable(reducing PPIs administration to as-needed use),should be considered.CONCLUSION Nux vomica-Heel appears to be a valid opportunity for GERD treatment to favor the deprescription of PPIs and to maintain low disease activity together with the symptomatology remission.
基金the National Natural Science Foundation of China(Research Project No.52169018).
文摘A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance.
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C03170)Science and Technology Project of Quzhou(Grant No.2022K98)Hunan Province Key Field R&D Plan Project(Grant No.2022GK2068).
文摘Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732979 and No.2022TQ0127)the Cooperative Research Project of the Ministry of Education's "Chunhui Program"(Grant No.HZKY20220117)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20220587)the National Natural Science Foundation of China(Grant No.52309112)。
文摘The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.