期刊文献+
共找到1,821篇文章
< 1 2 92 >
每页显示 20 50 100
Operation optimization of plugged screen cleanup by rotary water jetting 被引量:3
1
作者 Dong Changyin Li Yanlong +3 位作者 Long Jiajia Zhang Qinghua Wang Dengqing Wu Jianping 《Petroleum Science》 SCIE CAS CSCD 2014年第1期122-130,共9页
The rotary water jetting is one of the most important techniques for horizontal well cleanup.The jet flow is used to remove plugging particles from sand control screens to recover their permeability.Currently,the oper... The rotary water jetting is one of the most important techniques for horizontal well cleanup.The jet flow is used to remove plugging particles from sand control screens to recover their permeability.Currently,the operation optimization of this technique depends mainly on experience due to absence of applicable evaluation and design models for removing plugging materials.This paper presents an experimental setup to simulate the cleanup process of plugged screens by rotary water jetting on the surface and to evaluate the performance of a jetting tool.Using real plugged screens pulled from damaged wells,a series of tests were performed,and the qualitative relationships between the cleanup efficiency and various operational parameters,such as the type of fluids used,flow rate,mode of tool movement,etc.,were obtained.The test results indicated that the cleanup performance was much better when the rotary jetting tool moved and stopped periodically for a certain time than that when it reciprocated at a constant speed.To be exact,it was desirable for the rotary jetting tool to move for 1.5-2 m and stop for 2-4 min,which was called the "move-stop-move" mode.Good cleanup performance could be obtained at high flow rates,and the flow rate was recommended to be no lower than 550-600 L/min.The test results also indicated that complex mud acid was better than clean water in terms of cleanup performance.Good cleanup efficiency and high screen permeability recovery could be achieved for severely plugged screens.Rotary jetting is preferred for the cleanup of horizontal wells with severely plugged screens,and the screen permeability recovery ratio may reach 20% if optimized operation parameters were used. 展开更多
关键词 Sand control screen cleanup performance rotary jetting operation optimization experimental simulation
下载PDF
CFD Model of Dense Gas-solid Systems in Jetting Fluidized Beds 被引量:2
2
作者 Kai Zhang Jiyu Zhang +1 位作者 Biiang Zhang John Yates 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2002年第2期117-120,共4页
A CFD code has been developed based on the conservation principles describing gas and solid flow in fluidized beds. This code is employed to simulate not only the spatiotemporal gas and solid phase velocities and v... A CFD code has been developed based on the conservation principles describing gas and solid flow in fluidized beds. This code is employed to simulate not only the spatiotemporal gas and solid phase velocities and voidage profiles in a two dimensional bed but also fluid dynamics in the jet region. The computational results show that gas flow direction is upward in the entire bed accompanied with random local circulations, whilst solid flow direction is upward at the center and downward near the wall. The radical reason of strong back mixing of solid particles and good transfer behavior between two phases is that the jet entrains solid particles. Numerical calculation indicates that gas velocity, solid velocity and pressure profile have a significant change when the voidage is 0 8. The simulated time averaged voidage profiles agree with the experimental results and simulated data reported by Gidaspow and Ettehadieh(1983). Therefore, CFD model can be regarded as a useful tool to study the jet characteristics in dense gas solid fluidized beds. 展开更多
关键词 jetting fluidized bed CFD model Gas solid dynamics Modified SIMPLE
下载PDF
Binder jetting 3D printing process optimization for rapid casting of green parts with high tensile strength
3
作者 Zhao-fa Zhang Li Wang +3 位作者 Lin-tao Zhang Peng-fei Ma Bing-heng Lu Chen-wei Du 《China Foundry》 SCIE CAS 2021年第4期335-343,共9页
Binder jetting 3D printing is a rapid,cost effective,and efficient moulding/core making process,which can be applied to a large variety of materials.However,it exhibits a relatively low green-part strength.This may ca... Binder jetting 3D printing is a rapid,cost effective,and efficient moulding/core making process,which can be applied to a large variety of materials.However,it exhibits a relatively low green-part strength.This may cause the collapse of the printed parts during de-caking and the pick-up procedure,especially in the case of small-scale structures,such as thin walls,tips,and channels.In this work,polyvinyl alcohol(PVA)was used as the additive in coated sand powder.By exploiting the binding effect between the two composites(thermoplastic phenolic resin and PVA)triggered by the binder,bonding necks firmly form among the sand particles,improving the green-part strength of the coated sand printed parts.Experiments based on the Taguchi method were used to investigate the relationship between the process parameters and the green-part tensile strength.The following set of optimal process parameters was identified:50wt.%alcoholicity of the binder,75%binder saturation,0.36 mm layer thickness and 4.5wt.%PVA content.Further,the effect of such parameters on the green-part tensile strength was determined via statistical analysis.The green part of an engine cylinder head sand pattern with complex cavity structures was printed,and the green-part tensile strength reached 2.31 MPa.Moreover,the ZL301 aluminum alloy impeller shape casting was prepared using sand molds printed with the optimal process parameters.The results confirm that the proposed binder jetting 3D printing process can guarantee the integrity of the printed green parts and of small-size structures during de-caking and the pick-up procedure.Furthermore,the casting made from the printed sand molds exhibits a relatively high quality. 展开更多
关键词 binder jetting green-part strength coated sand polyvinyl alcohol rapid casting
下载PDF
Bubbling to Jetting Transition during Argon Injection in Molten Steel
4
作者 Miguel A. Barron Joan Reyes Dulce Y. Medina 《World Journal of Engineering and Technology》 2020年第4期605-616,共12页
Bubbling to Jetting Transition is of the outmost importance in metallurgical processes given that the flow regime influences the refining rates, the refractory erosion, and the blockage of injection nozzles. Bubbling ... Bubbling to Jetting Transition is of the outmost importance in metallurgical processes given that the flow regime influences the refining rates, the refractory erosion, and the blockage of injection nozzles. Bubbling to jetting transition during subsonic bottom injection of argon in molten steel is studied here. The effect of the molten steel height, the injection velocity, the nozzle diameter, and the molten steel viscosity on the jet height and the bubbling to jetting transition is numerically analyzed using Computational Fluid Dynamics. Five subsonic argon injection velocities are considered: 5, 25, 50, 100 and 150 m/s. Three values of the metal height are taken into account, namely 1.5 m, 2 m and 2.5 m. Besides, three values of the nozzle diameters are considered: 0.001 m, 0.005 m and 0.01 m. Finally, three values of the molten steel viscosity are supposed: 0.0067, 0.1 and 1 kg/(m<span style="font-family:Verdana;"><span style="white-space:nowrap;">·</span></span><span style="font-family:Verdana;">s). It is observed that for the argon-molten steel system</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> the bubbling to jetting transition occurs for an injection velocity less than 25 m/s and that for the range of viscosities considered, the molten steel viscosity does not exert significant influence on the jet height and the bubbling to jetting transition. Due to the jet instability at subsonic velocities</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> a second transition, namely jetting to bubbling, is appreciated</span><span style="font-family:Verdana;">.</span> 展开更多
关键词 Argon Injection Bubbling to jetting Transition CFD Injection Velocity Jet Height Molten Steel Nozzle Diameter
下载PDF
Simulation and Experimental Investigation of Jetting Penetrator Charge at Large Stand-off Distance 被引量:10
5
作者 FU Jianping CHEN Zhigang +3 位作者 HOU Xiucheng LI Shuqiang LI Shoucang WANG Jingwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期117-124,共8页
In order to study and apply the penetration performance of jetting penetrator charge at long stand-off distance, three jetting penetrator charges(JPC), including spherical cone liner, truncated wide-angle liner and sp... In order to study and apply the penetration performance of jetting penetrator charge at long stand-off distance, three jetting penetrator charges(JPC), including spherical cone liner, truncated wide-angle liner and spherical segment liner, are designed. The numerical simulation analysis of the formation, elongation and penetration processes of rod-like jet is conducted by using LS-DYNA software. And the penetrating test is carried out at long stand-off distance. The test results show that the rod-like jet formed by the optimized spherical segment liner can pierce through a 90mm thick 45# steel target at 20 charge diameters(CD) stand-off distance when the charge detonation mode is a central point initiation, and the penetration depth can be up to 1.6CD. It is concluded that, at 20 CD stand-off distance, the penetration performance of JPC with spherical segment liner is the best, that of truncated wide-angle liner takes second place, and that of spherical cone liner is the worst. 展开更多
关键词 mechanics explosion shaped charge JET LINER PENETRATION numerical simulation
下载PDF
Mechanism and numerical simulation of pressure stagnation during water jetting perforation 被引量:5
6
作者 Huang Zhongwei Li Gensheng Tian Shouceng Shen Zhonghou Luo Hongbin 《Petroleum Science》 SCIE CAS CSCD 2008年第1期52-55,共4页
When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the ... When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the theoretical basis for the technology of hydro-jet fracturing. This paper analyzes the mechanism of generating pressure stagnation in water jet hole, and puts forward a new concept of hydroseal. Then, the distribution of pressure in the hole was simulated with the finite element method. The simulation results showed that the pressure in the hole was higher than that in the annulus. Also, the lower the annular pressure (confining pressure) and the higher the blasting pressure, the greater the pressure difference. An experiment indicated that the cement sample was lifted up under the pressure stagnation in the hole, which proved the finite element simulation results obviously. 展开更多
关键词 Water jet PERFORATION pressure stagnation hydro-seal MECHANISM
下载PDF
Recent progress on the jetting of single deformed cavitation bubbles near boundaries 被引量:1
7
作者 Jing-zhu Wang Guang-hang Wang +1 位作者 Qing-yun Zeng Yi-wei Wang 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第5期832-857,共26页
Cavitation occurs widely in nature and engineering and is a complex problem with multiscale features in both time and space due to its associating violent oscillations. To understand the important but complicated phen... Cavitation occurs widely in nature and engineering and is a complex problem with multiscale features in both time and space due to its associating violent oscillations. To understand the important but complicated phenomena and fluid mechanics behind cavitation, a great deal of effort has been invested in investigating the collapse of a single bubble near different boundaries. This review aims to cover recent developments in the collapse of single bubbles in the vicinity of complex boundaries, including single boundaries and two parallel boundaries, and open questions for future research are discussed. Microjets are the most prominent features of the non-spherical collapse of cavitation bubbles near boundaries and are directed toward rigid walls and away from free surfaces. Such a bubble generally splits, resulting in the formation of two axial jets directed opposite to each other under the constraints of an elastic boundary or two parallel boundaries. The liquid jet penetrates the bubble, impacts the boundary, and exerts a great deal of stress on any nearby boundary. This phenomenon can cause damage, such as the erosion of blades in hydraulic machinery, the rupture of human blood vessels, and underwater explosions, but can also be exploited for applications, such as needle-free injection, drug and gene delivery, surface cleaning, and printing. Many fascinating developments related to these topics are presented and summarized in this review. Finally, three directions are proposed that seem particularly fruitful for future research on the interaction of cavitation bubbles and boundaries. 展开更多
关键词 jetting cavitation bubble near complex boundaries bubble-based technique and their applications
原文传递
Eulerian simulations of bubbling and jetting regimes in a fluidized bed
8
作者 Sirisha Parvathaneni Sujay Karmakar Vivek V.Buwa 《Particuology》 SCIE EI CAS CSCD 2023年第4期50-68,共19页
The mode of gas-injection is known to influence the local bubbling and jetting behavior in gas-solid fluidized beds.The resultant bubbling behavior influences the mixing and distribution of the gas and solid phases,wh... The mode of gas-injection is known to influence the local bubbling and jetting behavior in gas-solid fluidized beds.The resultant bubbling behavior influences the mixing and distribution of the gas and solid phases,which in turn can influence heat and mass transfer,and reaction performance in large-scale gas-solid fluidized beds.In the present work,we simulated unary gas-solid flow of particles differing in density,fluidized using uniform and two-jet distributors at different UG.The predictions are validated using the measured local gas-phase area fraction fluctuations,bubble size distribution,and bubble rise velocity.The effect of the models used for calculation of gas-solid drag(βgs),solids frictional pressure(Psf),and specularity coefficient(φ)on the bubbling characteristics under dense and dilute flow con-ditions are analysed.Under dense bed condition(UG=1.1 Umf),an increase in the Psf and φ led to an increase in solids viscosity,which in turn led to a decrease in the bubble rise velocity and size.In the case of the two-jet distributor,an increase in βgs predicted merging of the larger jets and formation of larger bubbles.Further,to predict the different jetting regimes(isolated jets,breakage/merging of jets,and generation of larger bubbles)at different UG correctly,we show that different βgs models are required.Whereas,in the case of gas-solid flows comprised of particles of different density fluidized with the uniform distributor,a single βgs model predicted the bubbling characteristics reasonably well with measurements. 展开更多
关键词 FLUIDIZATION BUBBLING jetting Gas-solid drag Frictional viscosity Bubble size distribution
原文传递
Jetting Method in Patternless Casting Manufacturing Technique
9
作者 李炯 杨伟东 +1 位作者 刘丽冰 颜永年 《Tsinghua Science and Technology》 SCIE EI CAS 2009年第S1期175-179,共5页
In this paper, by studying the different kinds of jetting system in patternless casting manufacturing (PCM) technique, the different types of jetting mode are tested which affect whether PCM process can be done succes... In this paper, by studying the different kinds of jetting system in patternless casting manufacturing (PCM) technique, the different types of jetting mode are tested which affect whether PCM process can be done successful. The two different kinds of jetting device and their control circuits are designed based on which the relationship between the jetting system and amount of the catalyst flow is analyzed. The experiments show that the amount of the catalyst by using discrete jetting mode in the discrete jetting device is much lower than that by using continuous jetting mode in the discrete jetting device and in the continuous device when the pressured is fixed. At the same time, in the discrete jetting mode the amount of the catalyst flow can also be changed by adjusting the pulse frequency and its duty cycle, this can ensure the strength of the sand mould. The flow of catalyst in this discrete jetting device can match the scanning speed of the jetting device in real time which will improve the resolution and building precision of casting mould. When the amount of the catalyst jetting is too large, PCM process will fail. 展开更多
关键词 patternless casting manufacturing (PCM) discrete jetting continuous jetting surface quality FLOW
原文传递
基于前视声呐图像的AUV目标识别与跟踪
10
作者 郑鹏 曹园山 +2 位作者 张超 王健 徐令令 《舰船科学技术》 北大核心 2024年第5期115-119,共5页
声呐图像由于水体不均匀、边界不规则以及声呐设备本身性能的限制,导致图像噪声明显、亮度不均、分辨率低,使得水下AUV装备在使用前视声呐进行水下目标检测时难度较大。针对该问题,基于m750d声呐探测获得的AUV声呐数据,进行了数据提取... 声呐图像由于水体不均匀、边界不规则以及声呐设备本身性能的限制,导致图像噪声明显、亮度不均、分辨率低,使得水下AUV装备在使用前视声呐进行水下目标检测时难度较大。针对该问题,基于m750d声呐探测获得的AUV声呐数据,进行了数据提取、高斯滤波处理、扇形映射处理,并采用Jet映射对声呐灰度图像进行了伪彩色映射提高数据标注速度和精度,制作获得了4组2 500张声呐图像的AUV目标检测数据集;采用YOLOv4-tiny目标检测算法开展AUV目标检测研究,研究结果表明该方法在该数据集上表现优秀,mAP@0.50达到94.17%,FPS在22帧左右,说明该轻量级网络在水下AUV目标识别与跟踪应用上具有较好的应用价值。 展开更多
关键词 前视声呐 Jet映射 AUV目标检测数据集 YOLOv4-tiny目标检测
下载PDF
Assessment of compressive strength of jet grouting by machine learning 被引量:1
11
作者 Esteban Diaz Edgar Leonardo Salamanca-Medina Roberto Tomas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期102-111,共10页
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope... Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns. 展开更多
关键词 Jet grouting Ground improvement Compressive strength Machine learning
下载PDF
Numerical investigation of the influence of companion drops on drop-on-demand ink jetting 被引量:3
12
作者 Hai-yun ZHANG Jin WANG Guo-dong LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第8期584-595,共12页
In this study we characterized and investigated the specific phenomenon of "companion drops" in the drop-ondemand(DOD) ink jetting process.A series of simulations based on a piezoelectric DOD printhead syste... In this study we characterized and investigated the specific phenomenon of "companion drops" in the drop-ondemand(DOD) ink jetting process.A series of simulations based on a piezoelectric DOD printhead system is presented,adapting the volume-of-fluid(VOF) interface-capturing method to track the boundary evolution and model the interfacial physics.The results illustrate the causality between the generation of companion drops and droplet deviation behavior,as well as their close correlations with ink jetting straightness and printing accuracy.The characteristics of companion drops are summarized and compared with those of satellite drops.Also,a theoretical mechanism for the generation of companion drops is presented,and their effects and behaviors are analyzed and discussed.Finally,the effects of critical factors on the generation of companion drops are investigated and characterized based on variations in the printable pressure range.Recommendations are given for the suppression of companion drops and for the improvement of printing accuracy. 展开更多
关键词 落下按需(国防部) 墨水 jetting 微滴偏差 同伴落下 计算液体动力学(CFD ) Volume-of-fluid (VOF ) 方法
原文传递
Process development for green part printing using binder jetting additive manufacturing 被引量:1
13
作者 Hadi MIYANAJI Morgan ORTH +1 位作者 Junaid Muhammad AKBAR Li YANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2018年第4期504-512,共9页
Originally developed decades ago, the binder jetting additive manufacturing (B J-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compat- i... Originally developed decades ago, the binder jetting additive manufacturing (B J-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compat- ibility and technological expandability. However, the adoption of B J-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for B J-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in- process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts. 展开更多
关键词 binder jetting additive manufacturing green part process optimization process development
原文传递
CONVEXITY OF THE FREE BOUNDARY FOR AN AXISYMMETRIC INCOMPRESSIBLE IMPINGING JET
14
作者 王晓慧 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期234-246,共13页
This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provi... This paper is devoted to the study of the shape of the free boundary for a threedimensional axisymmetric incompressible impinging jet.To be more precise,we will show that the free boundary is convex to the fluid,provided that the uneven ground is concave to the fluid. 展开更多
关键词 Euler system axisymmetric impinging jet INCOMPRESSIBLE free boundary CONVEXITY
下载PDF
Current observation and analysis based on mooring systems in the Andaman Sea
15
作者 Yimeng WANG Jingsong GUO +4 位作者 Dapeng QU Zhixin ZHANG Chalermrat SANGMANEE Varintha VASINAMEKHIN Binghuo GUO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期484-491,共8页
The basic structure and intraseasonal evolution of currents in the southeastern Andaman Sea was analyzed based on data collected in 2017 from two subsurface moorings(C1 and C5).Periodic variation in the upper ocean cu... The basic structure and intraseasonal evolution of currents in the southeastern Andaman Sea was analyzed based on data collected in 2017 from two subsurface moorings(C1 and C5).Periodic variation in the upper ocean currents of the Andaman Sea was investigated by combining observational and satellite data.Mooring observations show that rapid changes of current speed and direction occurred in May and June,with a significant increase in current velocity at the C1 mooring.In the second half of the year,southward flow dominated at the C1 mooring,and alternating northward and southward flows were evident at the C5 mooring during the same period but the northward flow prevailed in boreal winter.In addition,analysis of the power spectra of the upper currents revealed that the tidal period at both moorings is primarily semidiurnal with weaker energy than that of the low-frequency currents.The upper ocean currents at the C1 and C5 moorings exhibited intraseasonal variation of 30-60 d and 120 d,while the zonal current at the C1 mooring exhibited a notable period of approximately 180 d.Further analysis indicated that the variability of currents in the Andaman Sea is influenced primarily by equatorial Kelvin waves and Rossby wave packets.Moreover,our results suggest that equatorial Kelvin waves from the eastern Indian Ocean entered the Andaman Sea in the form of Wyrtki Jets and propagated primarily along two distinct pathways during the observation period.In addition to coastal boundary Kelvin waves,it was found that a branch of the Wyrtki Jet that directly enters the Andaman Sea and flows northward along the slope of the continental shelf,and reflected Rossby wave packets by topography. 展开更多
关键词 mooring observation Wyrtki Jet Rossby waves intraseasonal variation
下载PDF
Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases
16
作者 Yating ZHAO Ming XUE +2 位作者 Jing JIANG Xiao-Ming HU Anning HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期619-638,共20页
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos... Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios. 展开更多
关键词 NARCCAP Central United States PRECIPITATION low-level jet large-scale environment diurnal variation
下载PDF
Numerical Investigation of the Angle of Attack Effect on Cloud Cavitation Flow around a Clark-Y Hydrofoil
17
作者 Di Peng Guoqing Chen +1 位作者 Jiale Yan Shiping Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2947-2964,共18页
Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehic... Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehicles.The re-entrant jet and compression wave resulting from the collapse of cavity vapour are pivotal factors contributing to cavity instability.Concurrently,these phenomena significantly modulate the evolution of cavitation flow.In this paper,numerical investigations into cloud cavitation over a Clark-Y hydrofoil were conducted,utilizing the Large Eddy Simulation(LES)turbulence model and the Volume of Fluid(VOF)method within the OpenFOAM framework.Comparative analysis of results obtained at different angles of attack is undertaken.A discernible augmentation in cavity thickness is observed concomitant with the escalation in attack angle,alongside a progressive intensification in pressure at the leading edge of the hydrofoil,contributing to the suction force.These results can serve as a fundamental point of reference for gaining a deeper comprehension of cloud cavitation dynamics. 展开更多
关键词 Cloud cavitation re-entrant jet compression wave clark-Y hydrofoil
下载PDF
Experimental investigation of the inhibition of deep-sea mining sediment plumes by polyaluminum chloride
18
作者 Fengpeng Zhang Xuguang Chen +3 位作者 Jiakang Wei Yangyang Zhang Weikun Xu Hao Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期91-104,共14页
Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the poten... Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension. 展开更多
关键词 Deep-sea mining Deep-sea polymetallic nodules Sediment plume Polyaluminum chloride Jet impact Particle flocculation
下载PDF
Transition from a filamentary mode to a diffuse one with varying distance from needle to stream of an argon plasma jet
19
作者 许慧敏 高敬格 +3 位作者 贾鹏英 冉俊霞 陈俊宇 李金懋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期539-544,共6页
Plasma jet has extensive application potentials in various fields, which normally operates in a diffuse mode when helium is used as the working gas. However, when less expensive argon is used, the plasma jet often ope... Plasma jet has extensive application potentials in various fields, which normally operates in a diffuse mode when helium is used as the working gas. However, when less expensive argon is used, the plasma jet often operates in a filamentary mode. Compared to the filamentary mode, the diffuse mode is more desirable for applications. Hence, many efforts have been exerted to accomplish the diffuse mode of the argon plasma jet. In this paper, a novel single-needle argon plasma jet is developed to obtain the diffuse mode. It is found that the plasma jet operates in the filamentary mode when the distance from the needle tip to the central line of the argon stream(d) is short. It transits to the diffuse mode with increasing d. For the diffuse mode, there is always one discharge pulse per voltage cycle, which initiates at the rising edge of the positive voltage. For comparison, the number of discharge pulse increases with an increase in the peak voltage for the filamentary mode. Fast photography reveals that the plasma plume in the filamentary mode results from a guided positive streamer,which propagates in the argon stream. However, the plume in the diffuse mode originates from a branched streamer, which propagates in the interfacial layer between the argon stream and the surrounding air. By optical emission spectroscopy,plasma parameters are investigated for the two discharge modes, which show a similar trend with increasing d. The diffuse mode has lower electron temperature, electron density, vibrational temperature, and gas temperature compared to the filamentary mode. 展开更多
关键词 plasma jet diffuse mode filamentary mode optical emission spectroscopy
下载PDF
A large-scale cold plasma jet: generation mechanism and application effect
20
作者 崔伟胜 张若兵 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期1-8,共8页
Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper,... Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper, we introduce a novel plasma jet morphology known as the large-scale cold plasma jet(LSCPJ), characterized by the presence of both a central conical plasma jet and a peripheral trumpet-like diffuse plasma jet. The experimental investigations have identified the factors influencing the conical and the trumpet-like diffuse plasma jet, and theoretical simulations have shed light on the role of the flow field and the electric field in shaping the formation of the LSCPJ. It is proved that, under conditions of elevated helium concentration, the distributions of impurity gas particles and the electric field jointly determine the plasma jet’s morphology. High-speed ICCD camera images confirm the dynamic behavior of plasma bullets in LSCPJ, which is consistent with the theoretical analysis. Finally, it is demonstrated that when applied to the surface treatment of silicone rubber, LSCPJ can achieve a treatment area over 28 times larger than that of APCPJ under equivalent conditions. This paper uncovers the crucial role of impurity gases and electric fields in shaping plasma jet morphology and opens up the possibility of efficiently diversifying plasma jet generation effects through external electromagnetic fields. These insights hold the promise of reducing the generation cost of plasma jets and expanding their applications across various industrial sectors. 展开更多
关键词 diffuse plasma jet flow field electric field surface treatment
下载PDF
上一页 1 2 92 下一页 到第
使用帮助 返回顶部