期刊文献+
共找到184,325篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of connected automated vehicle on stability and energy consumption of heterogeneous traffic flow system
1
作者 申瑾 赵建东 +2 位作者 刘华清 姜锐 余智鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期291-301,共11页
With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)wi... With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion. 展开更多
关键词 heterogeneous traffic flow CAV linear stability nonlinear stability energy consumption
下载PDF
Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer
2
作者 Leqi Zhao Yijun Zhong +2 位作者 Chencheng Cao Tony Tang Zongping Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期59-73,共15页
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder... The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern. 展开更多
关键词 Solid-state battery Cathode electrolyte interlayer Flame-retardant additive Cycling stability Interfacial stability
下载PDF
Sodium Nitrate/Formamide Deep Eutectic Solvent as Flame-Retardant and Anticorrosive Electrolyte Enabling 2.6 V Safe Supercapacitors with Long Cyclic Stability
3
作者 Huachao Yang Yiheng Qi +6 位作者 Zifan Wang Qinghu Pan Chuanzhi Zhang Jianhua Yan Kefa Cen Zheng Bo Kostya(Ken)Ostrikov 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期374-383,共10页
Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are ... Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are plagued by the limited operation voltage window(typically≤2.3 V)and inherent corrosion of current collectors.Herein,a novel deep eutectic solvent(DES)-based electrolyte which uses formamide(FMD)as hydrogen-bond donor and sodium nitrate(NaNO_(3))as hydrogen-bond acceptor is demonstrated.The electrolyte exhibits the wide electrochemical stability window(3.14 V),high electrical conductivity(14.01 mScm^(-1)),good flame-retardance,anticorrosive property,and ultralow cost(7%of the commercial electrolyte and 2%of WIS).Raman spectroscopy and Density Functional Theory calculations reveal that the hydrogen bonds between the FMD molecules and NO_(3)^(-)ions are primarily responsible for the superior stability and conductivity.The developed NaNO_(3)/FMD-based coin cell supercapacitor is among the best-performing state-of-art DES and WIS devices,evidenced by the high voltage window(2.6 V),outstanding energy and power densities(22.77 Wh kg^(-1)at 630 W kg^(-1)and 17.37 kW kg^(-1)at 12.55 Wh kg^(-1)),ultralong cyclic stability(86%after 30000 cycles),and negligible current collector corrosion.The NaNO_(3)/FMD industry adoption potential is demonstrated by fabricating 100 F pouch cell supercapacitors using commercial aluminum current collectors. 展开更多
关键词 cyclic stability deep eutectic solvents electrical conductivity electrochemical stability window SUPERCAPACITORS
下载PDF
General Lyapunov Stability and Its Application to Time-Varying Convex Optimization
4
作者 Zhibao Song Ping Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第11期2316-2326,共11页
In this article, a general Lyapunov stability theory of nonlinear systems is put forward and it contains asymptotic/finite-time/fast finite-time/fixed-time stability. Especially, a more accurate estimate of the settli... In this article, a general Lyapunov stability theory of nonlinear systems is put forward and it contains asymptotic/finite-time/fast finite-time/fixed-time stability. Especially, a more accurate estimate of the settling-time function is exhibited for fixedtime stability, and it is still extraneous to the initial conditions.This can be applied to obtain less conservative convergence time of the practical systems without the information of the initial conditions. As an application, the given fixed-time stability theorem is used to resolve time-varying(TV) convex optimization problem.By the Newton's method, two classes of new dynamical systems are constructed to guarantee that the solution of the dynamic system can track to the optimal trajectory of the unconstrained and equality constrained TV convex optimization problems in fixed time, respectively. Without the exact knowledge of the time derivative of the cost function gradient, a fixed-time dynamical non-smooth system is established to overcome the issue of robust TV convex optimization. Two examples are provided to illustrate the effectiveness of the proposed TV convex optimization algorithms. Subsequently, the fixed-time stability theory is extended to the theories of predefined-time/practical predefined-time stability whose bound of convergence time can be arbitrarily given in advance, without tuning the system parameters. Under which, TV convex optimization problem is solved. The previous two examples are used to demonstrate the validity of the predefined-time TV convex optimization algorithms. 展开更多
关键词 Fixed-time stability nonlinear system predefined-time stability time-varying(TV)convex optimization
下载PDF
Gouge stability controlled by temperature elevation and obsidian addition in basaltic faults and implications for moonquakes 被引量:1
5
作者 Shutian Cao Fengshou Zhang +4 位作者 Mengke An Derek Elsworth Manchao He Hai Liu Luanxiao Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1273-1282,共10页
Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear... Basalt is a major component of the earth and moon crust.Mineral composition and temperature influence frictional instability and thus the potential for seismicity on basaltic faults.We performed velocitystepping shear experiments on basalt gouges at a confining pressure of 100 MPa,temperatures in the range of 100-400℃ and with varied obsidian mass fractions of 0-100%under wet/dry conditions to investigate the frictional strength and stability of basaltic faults.We observe a transition from velocity-neutral to velocity-weakening behaviors with increasing obsidian content.The frictional stability response of the mixed obsidian/basalt gouges is characterized by a transition from velocitystrengthening to velocity-weakening at 200℃ and another transition to velocity-strengthening at temperatures>300℃.Conversely,frictional strengths of the obsidian-bearing gouges are insensitive to temperature and wet/dry conditions.These results suggest that obsidian content dominates the potential seismic response of basaltic faults with the effect of temperature controlling the range of seismogenic depths.Thus,shallow moonquakes tend to occur in the lower lunar crust due to the corresponding anticipated higher glass content and a projected temperature range conducive to velocity-weakening behavior.These observations contribute to a better understanding of the nucleation mechanism of shallow seismicity in basaltic faults. 展开更多
关键词 Fault stability Basaltic fault Temperature elevation Obsidian content Shallow moonquakes
下载PDF
Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel 被引量:1
6
作者 N.HUMNEKAR D.SRINIVASACHARYA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期563-580,共18页
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn... The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented. 展开更多
关键词 NANOFLUID inclined channel variable viscosity linear stability double dif-fusion porous medium
下载PDF
Probabilistic analysis of tunnel face seismic stability in layered rock masses using Polynomial Chaos Kriging metamodel 被引量:2
7
作者 Jianhong Man Tingting Zhang +1 位作者 Hongwei Huang Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2678-2693,共16页
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines... Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction. 展开更多
关键词 Tunnel face stability Layered rock masses Polynomial Chaos Kriging(PCK) Sensitivity index Seismic loadings
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas 被引量:1
8
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Reliability analysis of slope stability by neural network,principal component analysis,and transfer learning techniques 被引量:1
9
作者 Sheng Zhang Li Ding +3 位作者 Menglong Xie Xuzhen He Rui Yang Chenxi Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4034-4045,共12页
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema... The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data. 展开更多
关键词 Slope stability analysis Monte Carlo simulation Neural network(NN) Transfer learning(TL)
下载PDF
Insights into ionic association boosting water oxidation activity and dynamic stability 被引量:1
10
作者 Zanling Huang Shuqi Zhu +8 位作者 Yuan Duan Chaoran Pi Xuming Zhang Abebe Reda Woldu Jing-Xin Jian Paul K.Chu Qing-Xiao Tong Liangsheng Hu Xiangdong Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期99-109,I0004,共12页
There have been reports about Fe ions boosting oxygen evolution reaction(OER)activity of Ni-based catalysts in alkaline conditions,while the origin and reason for the enhancement remains elusive.Herein,we attempt to i... There have been reports about Fe ions boosting oxygen evolution reaction(OER)activity of Ni-based catalysts in alkaline conditions,while the origin and reason for the enhancement remains elusive.Herein,we attempt to identify the activity improvement and discover that Ni sites act as a host to attract Fe(Ⅲ)to form Fe(Ni)(Ⅲ)binary centres,which serve as the dynamic sites to promote OER activity and stability by cyclical formation of intermediates(Fe(Ⅲ)→Fe(Ni)(Ⅲ)→Fe(Ni)-OH→Fe(Ni)-O→Fe(Ni)OOH→Fe(Ⅲ))at the electrode/electrolyte interface to emit O_(2).Additionally,some ions(Co(Ⅱ),Ni(Ⅱ),and Cr(Ⅲ))can also be the active sites to catalyze the OER process on a variety of electrodes.The Fe(Ⅲ)-catalyzed overall water-splitting electrolyzer comprising bare Ni foam as the anode and Pt/Ni-Mo as the cathode demonstrates robust stability for 1600 h at 1000 mA cm^(-2)@~1.75 V.The results provide insights into the ioncatalyzed effects boosting OER performance. 展开更多
关键词 Oxygen evolution reaction Fe(Ⅲ)-catalysis Ni-Fe binary active centers Ion-catalyzed effects Robust stability
下载PDF
Effect and mechanism of reductive polyaniline on the stability of nitrocellulose
11
作者 Wenjiang Li Binbin Wang +5 位作者 Huimin Chen Aoao Lu Chenguang Li Qiang Li Fengqiang Nan Ping Du 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期217-225,共9页
The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, ... The search for new green and efficient stabilizers is of great importance for the stabilization of nitrocellulose(NC). This is due to the shortcomings of traditional stabilizers, such as high toxicity. In this study, reduced polyaniline(r-PANI), which has a similar functional structure to diphenylamine(DPA) but is non-toxic, was prepared from PANI based on the action with N_(2)H_(4) and NH_(3)-H_(2)O, and used for the first time as a potential stabilizer for NC. XPS, FTIR, Raman, and SEM were used to characterize the reduced chemical structure and surface morphology of r-PANI. In addition, the effect of r-PANI on the stabilization of NC was characterized using DSC, VST, isothermal TG, and MMC. Thermal weight loss was reduced by 83% and 68% and gas pressure release by 75% and 49% compared to pure NC and NC&3%DPA, respectively.FTIR and XPS were used to characterize the structural changes of r-PANI before and after reaction with NO_(2). The 1535 cm^(-1) and 1341 cm^(-1) of the FTIR and the 404.98 eV and 406.05 eV of the XPS showed that the -NO_(2) was generated by the absorption of NO_(2). Furthermore, the quantum chemical calculation showed that NO_(2) was directly immobilized on r-PANI by forming -NO_(2) in the neighboring position of the benzene ring. 展开更多
关键词 NITROCELLULOSE Green stabilizer POLYANILINE Mechanism of stability
下载PDF
Preparation and Thermal Stability of AlMoON Based Solar Selective Absorption Coating
12
作者 闵捷 YUAN Wenxu +5 位作者 CHEN Yufei LAN Yapeng YAN Mengdi LIU Hanze CHENG Xudong 代路 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期854-862,共9页
AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON an... AlMoON based solar selective absorption coatings were deposited on stainless steel substrate by magnetron sputtering.The coatings included infrared reflection layer Mo,absorption layer AlMoN,absorption layer AlMoON and antireflection layer AlMoO from bottom to top.The surface of the deposited coatings is flat without obvious defects.The absorptivity and emissivity are 0.896 and 0.09,respectively,and the quality factor is 9.96.After heat treatment at 500℃-36 h,the surface roughness of the coating increases,a small number of cracks and other defects appear,and the broken part is still attached to the coating surface.A certain degree of element diffusion occurs in the coatings,resulting in the decline of the optical properties of the coatings.The absorptivity and emissivity are 0.883 and 0.131,respectively,the quality factor is 7.06,and the PC value is 0.0335.The coatings do not fail under this condition and have certain thermal stability. 展开更多
关键词 AlMoON COATING PREPARATION thermal stability
下载PDF
Significantly enhanced thermal stability of HMX by phase-transition lysozyme coating
13
作者 Jiahui Liu Congmei Lin +3 位作者 Jianhu Zhang Chengcheng Zeng Zhijian Yang Fude Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期60-68,共9页
A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transitio... A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating. 展开更多
关键词 HMX LYSOZYME Phase transition Thermal stability Sensitivity
下载PDF
Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials
14
作者 Xiaona Liu Baohua Zhao +6 位作者 Yanyun Hu Luyue Huang Jingxiang Ma Shuqiao Xu Zhonglin Xia Xiaoying Ma Shuangchen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期23-33,共11页
Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is cruci... Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is crucial to design a high-performance material. Based on this, here, nitrogen-doped activated carbon(NAC) was prepared by pyrolyzing the blend of activated carbon powder(ACP) and melamine for the positive electrode of asymmetric CDI. By comparing the indicators changes such as conductivity, salt adsorption capacity, pH, and charge efficiency of the symmetrical ACP-ACP device to the asymmetric ACP-NAC device under different CDI cycles, as well as the changes of the electrochemical properties of anode and cathode materials after long-term operation, the reasons for the decline of the stability of the CDI performance were revealed. It was found that the carboxyl functional groups generated by the electro-oxidation of anode carbon materials make the anode zero-charge potential(E_(pzc)) shift positively,which results in the uneven distribution of potential windows of CDI units and affects the adsorption capacity. Furthermore, by understanding the electron density on C atoms surrounding the N atoms, we attribute the increased cyclic stability to the enhanced negativity of the charge of carbon atoms adjacent to quaternary-N and pyridinic-oxide-N. 展开更多
关键词 Anodic oxidation Capacitive deionization Cyclic stability N-DOPING
下载PDF
Spatial compartmentalization and temporal stability of associated microbiota in Pacific oyster Crassostrea gigas
15
作者 Qiang FU Zichao YU +4 位作者 Junyan ZHAO Lei GAO Ning KONG Lingling WANG Linsheng SONG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1348-1358,共11页
The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,t... The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,to reveal the relationship of associated microbiota to the fitness of oysters,temporal dynamics of microbiota in the gill,hemolymph,and hepatopancreas of C.gigas during April 2018-January 2019 were investigated by 16 S rRNA gene sequencing.The microbiota in C.gigas exhibited tissue heterogeneity,of which Spirochaetaceae was dominant in the gill and hemolymph while Mycoplasmataceae enriched in the hepatopancreas.Co-occurrence network demonstrated that the gill microbiota exhibited higher inter-taxon connectivity while the hemolymph microbiota had more modules.The richness(Chao 1 index)and diversity(Shannon index)of microbial community in each tissue showed no significant seasonal variations,except for the hepatopancreas having a higher richness in the autumn.Similarly,beta diversity analysis indicated a relatively stable microbiota in each tissue during the sampling period,showing relative abundance of the dominant taxa exhibiting temporal dynamics.Results indicate that the microbial community in C.gigas showed a tissue-specific stability with temporal dynamics in the composition,which might be essential for the tissue functioning and environmental adaption in oysters.This work provides a baseline microbiota in C.gigas and is helpful for the understanding of host-microbiota interaction in oysters. 展开更多
关键词 Pacific oyster associated microbiota spatial compartmentalization temporal stability
下载PDF
Global stability coefficient of large underground caverns under static loading and earthquake wave condition
16
作者 CHEN Peng-fei JIANG Quan +3 位作者 LIU Jian LI Shao-jun CHEN Tao HE Ben-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2826-2843,共18页
Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An ... Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group. 展开更多
关键词 underground caverns global stability coefficient static-dynamic overload local instability
下载PDF
Influences of oscillation on the physical stability and explosion characteristics of solid-liquid mixed fuel
17
作者 Chi Zhang Ge Song +2 位作者 Hui Guo Jiafan Ren Chunhua Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期191-198,共8页
The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of osci... The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation.The effects of oscillation on the physical stability of mixed fuel with two solid-liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60-300 r/min.The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system.When the mass ratio of liquid components is controlled at 66.9%,64.7%,62.6%the final explosion characteristics are stable,with a maximum difference of only 0.71%.The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%,69.6%,67.7%.The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume,and the repeatability is poor,with a maximum standard deviation of 82.736,which is much higher than the ratio without stratification.Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics. 展开更多
关键词 Solid-liquid mixed fuel Physical stability Explosion characteristics
下载PDF
Review of the Configuration and Transient Stability of Large-scale Renewable Energy Generation through Hybrid DC Transmission
18
作者 Xinshou Tian Yongning Chi +1 位作者 Longxue Li Hongzhi Liu 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期115-126,共12页
Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection ... Based on the complementary advantages of Line Commutated Converter(LCC)and Modular Multilevel Converter(MMC)in power grid applications,there are two types of hybrid DC system topologies:one is the parallel connection of LCC converter stations and MMC converter stations,and the other is the series connection of LCC and MMC converter stations within a single station.The hybrid DC transmission system faces broad application prospects and development potential in large-scale clean energy integration across regions and the construction of a new power system dominated by new energy sources in China.This paper first analyzes the system forms and topological characteristics of hybrid DC transmission,introducing the forms and topological characteristics of converter-level hybrid DC transmission systems and system-level hybrid DC transmission systems.Next,it analyzes the operating characteristics of LCC and MMC inverter-level hybrid DC transmission systems,provides insights into the transient stability of hybrid DC transmission systems,and typical fault ride-through control strategies.Finally,it summarizes the networking characteristics of the LCC-MMC series within the converter station hybrid DC transmission system,studies the transient characteristics and fault ridethrough control strategies under different fault types for the LCC-MMC series in the receiving-end converter station,and investigates the transient characteristics and fault ride-through control strategies under different fault types for the LCC-MMC series in the sending-end converter station. 展开更多
关键词 Hybrid DC transmission Transient stability CONFIGURATION Control system
下载PDF
Effects of layer interactions on instantaneous stability of finite Stokes flows
19
作者 Chen ZHAO Zhenli CHEN +1 位作者 C.T.MUTASA Dong LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期69-84,共16页
The stability analysis of a finite Stokes layer is of practical importance in flow control. In the present work, the instantaneous stability of a finite Stokes layer with layer interactions is studied via a linear sta... The stability analysis of a finite Stokes layer is of practical importance in flow control. In the present work, the instantaneous stability of a finite Stokes layer with layer interactions is studied via a linear stability analysis of the frozen phases of the base flow. The oscillations of two plates can have different velocity amplitudes, initial phases, and frequencies. The effects of the Stokes-layer interactions on the stability when two plates oscillate synchronously are analyzed. The growth rates of two most unstable modes when δ < 0.12 are almost equal, and δ = δ*/h*, where δ*and h*are the Stokes-layer thickness and the half height of the channel, respectively. However, their vorticities are different. The vorticity of the most unstable mode is symmetric, while the other is asymmetric. The Stokes-layer interactions have a destabilizing effect on the most unstable mode when δ < 0.68, and have a stabilizing effect when δ > 0.68. However, the interactions always have a stabilizing effect on the other unstable mode. It is explained that one of the two unstable modes has much higher dissipation than the other one when the Stokes-layer interactions are strong. We also find that the stability of the Stokes layer is closely related to the inflectional points of the base-flow velocity profile. The effects of inconsistent velocity-amplitude, initial phase, and frequency of the oscillations on the stability are analyzed. The energy of the most unstable eigenvector is mainly distributed near the plate of higher velocity amplitude or higher oscillation frequency. The effects of the initial phase difference are complicated because the base-flow velocity is extremely sensitive to the initial phase. 展开更多
关键词 finite Stokes layer instantaneous stability Stokes-layer interaction asynchronous oscillation
下载PDF
Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
20
作者 Dong-Sheng Chen Ting-Ting Miao +3 位作者 Cheng Chang Xu-Yang Guo Meng-Yan Guan and Zhong-Li Ji 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期494-504,共11页
The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsid... The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources,especially in complex stress environments caused by formation subsidence.In this study,we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations.The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain.Two phonon transport mechanisms were identified as factors enhancing thermal conductivity.At low compressive strains,a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules.At high compressive strains,the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels.Additionally,we found that a strain of0.04 is a watershed point,where methane hydrate transitions from stable to unstable.Furthermore,a strain of0.06 marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks.At a higher strain of0.08,the increased volume compression reduces the available space,limiting the diffusion ability of water and methane molecules within the hydrate.The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period.Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments. 展开更多
关键词 methane hydrate molecular dynamics thermal transport triaxial compression structural stability
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部