采用核酸适配体作为特异性识别元件,SYBR Green I(SGI)荧光染料为信号输出单元,构建了黄曲霉毒素B_1(AFB_1)生物传感器,并对试验条件进行了优化。优化的试验条件如下:适配体互补链与适配体的物质的量比为1.5,SGI加入量为10μL,适配体双...采用核酸适配体作为特异性识别元件,SYBR Green I(SGI)荧光染料为信号输出单元,构建了黄曲霉毒素B_1(AFB_1)生物传感器,并对试验条件进行了优化。优化的试验条件如下:适配体互补链与适配体的物质的量比为1.5,SGI加入量为10μL,适配体双链与SGI的作用时间为2 min,适配体与AFB_1作用时间为14 min。结果表明,在AFB_1质量浓度为0.1~1 000μg·L^(-1)时,荧光强度变化量与其质量浓度对数呈线性关系,检出限(3S/N)为0.081μg·L^(-1)。对实际玉米样品进行加标回收试验,回收率为95.2%~105%,测定值的相对标准偏差(n=7)均小于6.0%。与其他适配体传感器进行比较,该方法所构建的荧光适配体传感器对AFB_1的检测具有操作简便、检测范围宽、灵敏度高、特异性强、成本低廉等优点,适合现场快速测定。展开更多
为了研究植物乳杆菌材料对黄曲霉毒素去除新方法,为黄曲霉毒素B_(1)的高效生物去除提供了新思路。本文采用基于聚多巴胺的原子转移自由基聚合方法(Polydopamine-based Atom Transfer Radical Polymerization,p-ATRP)和细胞自催化的无铜...为了研究植物乳杆菌材料对黄曲霉毒素去除新方法,为黄曲霉毒素B_(1)的高效生物去除提供了新思路。本文采用基于聚多巴胺的原子转移自由基聚合方法(Polydopamine-based Atom Transfer Radical Polymerization,p-ATRP)和细胞自催化的无铜添加原子转移自由基聚合方法(Cell-catalyzed Copper-free Atom Transfer Radical Polymerization,c-ATRP)对植物乳杆菌活细胞表面进行修饰,引导原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)体系自组装聚合反应形成聚合物材料,对修饰后的植物乳杆菌进行表征,并比较修饰前后植物乳杆菌对黄曲霉毒素B_(1)吸附脱附能力。结果表明,未修饰的植物乳杆菌,细胞表面圆润光滑,经过p-ATRP修饰后的植物乳杆菌,细胞表面变得极为粗糙,经过c-ATRP修饰后的植物乳杆菌,细胞表面出现褶皱;未修饰的植物乳杆菌的Zeta点位为-8.43 mV,经过Dopamine和PNIPAAm修饰后的植物乳杆菌点位分别为1.791和13.767 mV;植物乳杆菌在0.1~100μg/mL黄曲霉毒素B_(1)吸附率为75.3%,p-ATRP和c-ATRP修饰的植物乳杆菌比未修饰的植物乳杆菌吸附能力分别提高了7.8%和6.4%。在相同黄曲霉毒素B_(1)浓度下,植物乳杆菌脱附率为6.1%,p-ATRP和c-ATRP修饰的植物乳杆菌脱附能力分别提高了14.4%和42%。经过修饰后的植物乳杆菌显著提升了植物乳杆菌对黄曲霉毒素的吸附和脱附能力。展开更多
文摘为了研究植物乳杆菌材料对黄曲霉毒素去除新方法,为黄曲霉毒素B_(1)的高效生物去除提供了新思路。本文采用基于聚多巴胺的原子转移自由基聚合方法(Polydopamine-based Atom Transfer Radical Polymerization,p-ATRP)和细胞自催化的无铜添加原子转移自由基聚合方法(Cell-catalyzed Copper-free Atom Transfer Radical Polymerization,c-ATRP)对植物乳杆菌活细胞表面进行修饰,引导原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)体系自组装聚合反应形成聚合物材料,对修饰后的植物乳杆菌进行表征,并比较修饰前后植物乳杆菌对黄曲霉毒素B_(1)吸附脱附能力。结果表明,未修饰的植物乳杆菌,细胞表面圆润光滑,经过p-ATRP修饰后的植物乳杆菌,细胞表面变得极为粗糙,经过c-ATRP修饰后的植物乳杆菌,细胞表面出现褶皱;未修饰的植物乳杆菌的Zeta点位为-8.43 mV,经过Dopamine和PNIPAAm修饰后的植物乳杆菌点位分别为1.791和13.767 mV;植物乳杆菌在0.1~100μg/mL黄曲霉毒素B_(1)吸附率为75.3%,p-ATRP和c-ATRP修饰的植物乳杆菌比未修饰的植物乳杆菌吸附能力分别提高了7.8%和6.4%。在相同黄曲霉毒素B_(1)浓度下,植物乳杆菌脱附率为6.1%,p-ATRP和c-ATRP修饰的植物乳杆菌脱附能力分别提高了14.4%和42%。经过修饰后的植物乳杆菌显著提升了植物乳杆菌对黄曲霉毒素的吸附和脱附能力。