The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been...Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.展开更多
To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transfo...To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.展开更多
As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources...As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources into production scheduling has become a research hotspot.For the scheduling problem of the flexible job shop adopting segmented AGV,a dual-resource scheduling optimization mathematical model of machine tools and AGVs is established by minimizing the maximum completion time as the objective function,and an improved genetic algorithmis designed to solve the problem in this study.The algorithmdesigns a two-layer codingmethod based on process coding and machine tool coding and embeds the task allocation of AGV into the decoding process to realize the real dual resource integrated scheduling.When initializing the population,three strategies are designed to ensure the diversity of the population.In order to improve the local search ability and the quality of the solution of the genetic algorithm,three neighborhood structures are designed for variable neighborhood search.The superiority of the improved genetic algorithmand the influence of the location and number of transfer stations on scheduling results are verified in two cases.展开更多
Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enabl...Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods.展开更多
The job shop scheduling problem(JSSP)is a classical combinatorial optimization problem that exists widely in diverse scenarios of manufacturing systems.It is a well-known NP-hard problem,when the number of jobs increa...The job shop scheduling problem(JSSP)is a classical combinatorial optimization problem that exists widely in diverse scenarios of manufacturing systems.It is a well-known NP-hard problem,when the number of jobs increases,the difficulty of solving the problem exponentially increases.Therefore,a major challenge is to increase the solving efficiency of current algorithms.Modifying the neighborhood structure of the solutions can effectively improve the local search ability and efficiency.In this paper,a genetic Tabu search algorithm with neighborhood clipping(GTS_NC)is proposed for solving JSSP.A neighborhood solution clipping method is developed and embedded into Tabu search to improve the efficiency of the local search by clipping the search actions of unimproved neighborhood solutions.Moreover,a feasible neighborhood solution determination method is put forward,which can accurately distinguish feasible neighborhood solutions from infeasible ones.Both of the methods are based on the domain knowledge of JSSP.The proposed algorithmis compared with several competitive algorithms on benchmark instances.The experimental results show that the proposed algorithm can achieve superior results compared to other competitive algorithms.According to the numerical results of the experiments,it is verified that the neighborhood solution clippingmethod can accurately identify the unimproved solutions and reduces the computational time by at least 28%.展开更多
A small and medium enterprises(SMEs)manufacturing platform aims to perform as a significant revenue to SMEs and vendors by providing scheduling and monitoring capabilities.The optimal job shop scheduling is generated ...A small and medium enterprises(SMEs)manufacturing platform aims to perform as a significant revenue to SMEs and vendors by providing scheduling and monitoring capabilities.The optimal job shop scheduling is generated by utilizing the scheduling system of the platform,and a minimum production time,i.e.,makespan decides whether the scheduling is optimal or not.This scheduling result allows manufacturers to achieve high productivity,energy savings,and customer satisfaction.Manufacturing in Industry 4.0 requires dynamic,uncertain,complex production environments,and customer-centered services.This paper proposes a novel method for solving the difficulties of the SMEs manufacturing by applying and implementing the job shop scheduling system on a SMEs manufacturing platform.The primary purpose of the SMEs manufacturing platform is to improve the B2B relationship between manufacturing companies and vendors.The platform also serves qualified and satisfactory production opportunities for buyers and producers by meeting two key factors:early delivery date and fulfillment of processing as many orders as possible.The genetic algorithm(GA)-based scheduling method results indicated that the proposed platform enables SME manufacturers to obtain optimized schedules by solving the job shop scheduling problem(JSSP)by comparing with the real-world data from a textile weaving factory in South Korea.The proposed platform will provide producers with an optimal production schedule,introduce new producers to buyers,and eventually foster relationships and mutual economic interests.展开更多
Due to the stubborn nature of dynamic job shop scheduling problem,a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment.In ant colony coordination...Due to the stubborn nature of dynamic job shop scheduling problem,a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment.In ant colony coordination mechanism,the dynamic job shop is composed of several autonomous ants.These ants coordinate with each other by simulating the ant foraging behavior of spreading pheromone on the trails,by which they can make information available globally,and further more guide ants make optimal decisions.The proposed mechanism is tested by several instances and the results confirm the validity of it.展开更多
Firstly an overview of the potential impact on work-in-process (WIP) and lead time is provided when transfer lot sizes are undifferentiated from processing lot sizes. Simple performance examples are compared to thos...Firstly an overview of the potential impact on work-in-process (WIP) and lead time is provided when transfer lot sizes are undifferentiated from processing lot sizes. Simple performance examples are compared to those from a shop with one-piece transfer lots. Next, a mathematical programming model for minimizing lead time in the mixed-model job shop is presented, in which one-piece transfer lots are used. Key factors affecting lead time are found by analyzing the sum of the longest setup time of individual items among the shared processes (SLST) and the longest processing time of individual items among processes (LPT). And lead time can be minimized by cutting down the SLST and LPT. Reduction of the SLST is described as a traveling salesman problem (TSP), and the minimum of the SLST is solved through job shop scheduling. Removing the bottleneck and leveling the production line optimize the LPT. If the number of items produced is small, the routings are relatively short, and items and facilities are changed infrequently, the optimal schedule will remain valid. Finally a brief example serves to illustrate the method.展开更多
The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an oper...The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.展开更多
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
文摘Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.
基金Shaanxi Provincial Key Research and Development Project(2023YBGY095)and Shaanxi Provincial Qin Chuangyuan"Scientist+Engineer"project(2023KXJ247)Fund support.
文摘To solve the sparse reward problem of job-shop scheduling by deep reinforcement learning,a deep reinforcement learning framework considering sparse reward problem is proposed.The job shop scheduling problem is transformed into Markov decision process,and six state features are designed to improve the state feature representation by using two-way scheduling method,including four state features that distinguish the optimal action and two state features that are related to the learning goal.An extended variant of graph isomorphic network GIN++is used to encode disjunction graphs to improve the performance and generalization ability of the model.Through iterative greedy algorithm,random strategy is generated as the initial strategy,and the action with the maximum information gain is selected to expand it to optimize the exploration ability of Actor-Critic algorithm.Through validation of the trained policy model on multiple public test data sets and comparison with other advanced DRL methods and scheduling rules,the proposed method reduces the minimum average gap by 3.49%,5.31%and 4.16%,respectively,compared with the priority rule-based method,and 5.34%compared with the learning-based method.11.97%and 5.02%,effectively improving the accuracy of DRL to solve the approximate solution of JSSP minimum completion time.
文摘As a typical transportation tool in the intelligent manufacturing system,Automatic Guided Vehicle(AGV)plays an indispensable role in the automatic production process of the workshop.Therefore,integrating AGV resources into production scheduling has become a research hotspot.For the scheduling problem of the flexible job shop adopting segmented AGV,a dual-resource scheduling optimization mathematical model of machine tools and AGVs is established by minimizing the maximum completion time as the objective function,and an improved genetic algorithmis designed to solve the problem in this study.The algorithmdesigns a two-layer codingmethod based on process coding and machine tool coding and embeds the task allocation of AGV into the decoding process to realize the real dual resource integrated scheduling.When initializing the population,three strategies are designed to ensure the diversity of the population.In order to improve the local search ability and the quality of the solution of the genetic algorithm,three neighborhood structures are designed for variable neighborhood search.The superiority of the improved genetic algorithmand the influence of the location and number of transfer stations on scheduling results are verified in two cases.
基金This research work is the Key R&D Program of Hubei Province under Grant No.2021AAB001National Natural Science Foundation of China under Grant No.U21B2029。
文摘Job shop scheduling(JS)is an important technology for modern manufacturing.Flexible job shop scheduling(FJS)is critical in JS,and it has been widely employed in many industries,including aerospace and energy.FJS enables any machine from a certain set to handle an operation,and this is an NP-hard problem.Furthermore,due to the requirements in real-world cases,multi-objective FJS is increasingly widespread,thus increasing the challenge of solving the FJS problems.As a result,it is necessary to develop a novel method to address this challenge.To achieve this goal,a novel collaborative evolutionary algorithmwith two-population based on Pareto optimality is proposed for FJS,which improves the solutions of FJS by interacting in each generation.In addition,several experimental results have demonstrated that the proposed method is promising and effective for multi-objective FJS,which has discovered some new Pareto solutions in the well-known benchmark problems,and some solutions can dominate the solutions of some other methods.
基金supported byNationalNatural Science Foundation forDistinguished Young Scholars of China(under the Grant No.51825502).
文摘The job shop scheduling problem(JSSP)is a classical combinatorial optimization problem that exists widely in diverse scenarios of manufacturing systems.It is a well-known NP-hard problem,when the number of jobs increases,the difficulty of solving the problem exponentially increases.Therefore,a major challenge is to increase the solving efficiency of current algorithms.Modifying the neighborhood structure of the solutions can effectively improve the local search ability and efficiency.In this paper,a genetic Tabu search algorithm with neighborhood clipping(GTS_NC)is proposed for solving JSSP.A neighborhood solution clipping method is developed and embedded into Tabu search to improve the efficiency of the local search by clipping the search actions of unimproved neighborhood solutions.Moreover,a feasible neighborhood solution determination method is put forward,which can accurately distinguish feasible neighborhood solutions from infeasible ones.Both of the methods are based on the domain knowledge of JSSP.The proposed algorithmis compared with several competitive algorithms on benchmark instances.The experimental results show that the proposed algorithm can achieve superior results compared to other competitive algorithms.According to the numerical results of the experiments,it is verified that the neighborhood solution clippingmethod can accurately identify the unimproved solutions and reduces the computational time by at least 28%.
基金This work was supported by the Technology Innovation Program 20004205(the development of smart collaboration manufacturing innovation service platform in the textile industry by producer-buyer)funded by MOTIE,Korea.
文摘A small and medium enterprises(SMEs)manufacturing platform aims to perform as a significant revenue to SMEs and vendors by providing scheduling and monitoring capabilities.The optimal job shop scheduling is generated by utilizing the scheduling system of the platform,and a minimum production time,i.e.,makespan decides whether the scheduling is optimal or not.This scheduling result allows manufacturers to achieve high productivity,energy savings,and customer satisfaction.Manufacturing in Industry 4.0 requires dynamic,uncertain,complex production environments,and customer-centered services.This paper proposes a novel method for solving the difficulties of the SMEs manufacturing by applying and implementing the job shop scheduling system on a SMEs manufacturing platform.The primary purpose of the SMEs manufacturing platform is to improve the B2B relationship between manufacturing companies and vendors.The platform also serves qualified and satisfactory production opportunities for buyers and producers by meeting two key factors:early delivery date and fulfillment of processing as many orders as possible.The genetic algorithm(GA)-based scheduling method results indicated that the proposed platform enables SME manufacturers to obtain optimized schedules by solving the job shop scheduling problem(JSSP)by comparing with the real-world data from a textile weaving factory in South Korea.The proposed platform will provide producers with an optimal production schedule,introduce new producers to buyers,and eventually foster relationships and mutual economic interests.
基金National Natural Science Foundation of China(No.50575137)National Science and Technology Support Project(No.2006BAF01A44)National High Technology Research and Development Program of China(863 Program,No.2007AA04Z109)
文摘Due to the stubborn nature of dynamic job shop scheduling problem,a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment.In ant colony coordination mechanism,the dynamic job shop is composed of several autonomous ants.These ants coordinate with each other by simulating the ant foraging behavior of spreading pheromone on the trails,by which they can make information available globally,and further more guide ants make optimal decisions.The proposed mechanism is tested by several instances and the results confirm the validity of it.
基金This project is supported by National Natural Science Foundation of China (No.70372062, No.70572044)Program for New Century Excellent Talents in University of China (No.NCET-04-0240).
文摘Firstly an overview of the potential impact on work-in-process (WIP) and lead time is provided when transfer lot sizes are undifferentiated from processing lot sizes. Simple performance examples are compared to those from a shop with one-piece transfer lots. Next, a mathematical programming model for minimizing lead time in the mixed-model job shop is presented, in which one-piece transfer lots are used. Key factors affecting lead time are found by analyzing the sum of the longest setup time of individual items among the shared processes (SLST) and the longest processing time of individual items among processes (LPT). And lead time can be minimized by cutting down the SLST and LPT. Reduction of the SLST is described as a traveling salesman problem (TSP), and the minimum of the SLST is solved through job shop scheduling. Removing the bottleneck and leveling the production line optimize the LPT. If the number of items produced is small, the routings are relatively short, and items and facilities are changed infrequently, the optimal schedule will remain valid. Finally a brief example serves to illustrate the method.
文摘The job shop scheduli ng problem has been studied for decades and known as an NP-hard problem. The fl exible job shop scheduling problem is a generalization of the classical job sche duling problem that allows an operation to be processed on one machine out of a set of machines. The problem is to assign each operation to a machine and find a sequence for the operations on the machine in order that the maximal completion time of all operations is minimized. A genetic algorithm is used to solve the f lexible job shop scheduling problem. A novel gene coding method aiming at job sh op problem is introduced which is intuitive and does not need repairing process to validate the gene. Computer simulations are carried out and the results show the effectiveness of the proposed algorithm.