This paper addresses a multi-agent scheduling problem with uniform parallel machines owned by a resource agent and competing jobs with dynamic arrival times that belong to different consumer agents.All agents are self...This paper addresses a multi-agent scheduling problem with uniform parallel machines owned by a resource agent and competing jobs with dynamic arrival times that belong to different consumer agents.All agents are self-interested and rational with the aim of maximizing their own objectives,resulting in intense resource competition among consumer agents and strategic behaviors of unwillingness to disclose private information.Within the context,a centralized scheduling approach is unfeasible,and a decentralized approach is considered to deal with the targeted problem.This study aims to generate a stable and collaborative solution with high social welfare while simultaneously accommodating consumer agents’preferences under incomplete information.For this purpose,a dynamic iterative auction-based approach based on a decentralized decision-making procedure is developed.In the proposed approach,a dynamic auction procedure is established for dynamic jobs participating in a realtime auction,and a straightforward and easy-to-implement bidding strategy without price is presented to reduce the complexity of bid determination.In addition,an adaptive Hungarian algorithm is applied to solve the winner determination problem efficiently.A theoretical analysis is conducted to prove that the proposed approach is individually rational and that the myopic bidding strategy is a weakly dominant strategy for consumer agents submitting bids.Extensive computational experiments demonstrate that the developed approach achieves high-quality solutions and exhibits considerable stability on largescale problems with numerous consumer agents and jobs.A further multi-agent scheduling problem considering multiple resource agents will be studied in future work.展开更多
Due to the stubborn nature of dynamic job shop scheduling problem,a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment.In ant colony coordination...Due to the stubborn nature of dynamic job shop scheduling problem,a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment.In ant colony coordination mechanism,the dynamic job shop is composed of several autonomous ants.These ants coordinate with each other by simulating the ant foraging behavior of spreading pheromone on the trails,by which they can make information available globally,and further more guide ants make optimal decisions.The proposed mechanism is tested by several instances and the results confirm the validity of it.展开更多
Stochastic dynamic job shop scheduling pro- blem with consideration of sequence-dependent setup times are among the most difficult classes of scheduling problems. This paper assesses the performance of nine dispatchin...Stochastic dynamic job shop scheduling pro- blem with consideration of sequence-dependent setup times are among the most difficult classes of scheduling problems. This paper assesses the performance of nine dispatching rules in such shop from makespan, mean flow time, maximum flow time, mean tardiness, maximum tardiness, number of tardy jobs, total setups and mean setup time performance measures viewpoint. A discrete event simulation model of a stochastic dynamic job shop manufacturing system is developed for investigation purpose. Nine dispatching rules identified from literature are incorporated in the simulation model. The simulation experiments are conducted under due date tightness factor of 3, shop utilization percentage of 90 % and setup times less than processing times. Results indicate that shortest setup time (SIMSET) rule provides the best performance for mean flow time and number of tardy jobs measures. The job with similar setup and modified earliest due date (JMEDD) rule provides the best performance for make- span, maximum flow time, mean tardiness, maximum tardiness, total setups and mean setup time measures.展开更多
基金supported by the National Natural Science Foundation of China(51975482)the China Scholarship Council.
文摘This paper addresses a multi-agent scheduling problem with uniform parallel machines owned by a resource agent and competing jobs with dynamic arrival times that belong to different consumer agents.All agents are self-interested and rational with the aim of maximizing their own objectives,resulting in intense resource competition among consumer agents and strategic behaviors of unwillingness to disclose private information.Within the context,a centralized scheduling approach is unfeasible,and a decentralized approach is considered to deal with the targeted problem.This study aims to generate a stable and collaborative solution with high social welfare while simultaneously accommodating consumer agents’preferences under incomplete information.For this purpose,a dynamic iterative auction-based approach based on a decentralized decision-making procedure is developed.In the proposed approach,a dynamic auction procedure is established for dynamic jobs participating in a realtime auction,and a straightforward and easy-to-implement bidding strategy without price is presented to reduce the complexity of bid determination.In addition,an adaptive Hungarian algorithm is applied to solve the winner determination problem efficiently.A theoretical analysis is conducted to prove that the proposed approach is individually rational and that the myopic bidding strategy is a weakly dominant strategy for consumer agents submitting bids.Extensive computational experiments demonstrate that the developed approach achieves high-quality solutions and exhibits considerable stability on largescale problems with numerous consumer agents and jobs.A further multi-agent scheduling problem considering multiple resource agents will be studied in future work.
基金National Natural Science Foundation of China(No.50575137)National Science and Technology Support Project(No.2006BAF01A44)National High Technology Research and Development Program of China(863 Program,No.2007AA04Z109)
文摘Due to the stubborn nature of dynamic job shop scheduling problem,a novel ant colony coordination mechanism is proposed in this paper to search for an optimal schedule in dynamic environment.In ant colony coordination mechanism,the dynamic job shop is composed of several autonomous ants.These ants coordinate with each other by simulating the ant foraging behavior of spreading pheromone on the trails,by which they can make information available globally,and further more guide ants make optimal decisions.The proposed mechanism is tested by several instances and the results confirm the validity of it.
文摘Stochastic dynamic job shop scheduling pro- blem with consideration of sequence-dependent setup times are among the most difficult classes of scheduling problems. This paper assesses the performance of nine dispatching rules in such shop from makespan, mean flow time, maximum flow time, mean tardiness, maximum tardiness, number of tardy jobs, total setups and mean setup time performance measures viewpoint. A discrete event simulation model of a stochastic dynamic job shop manufacturing system is developed for investigation purpose. Nine dispatching rules identified from literature are incorporated in the simulation model. The simulation experiments are conducted under due date tightness factor of 3, shop utilization percentage of 90 % and setup times less than processing times. Results indicate that shortest setup time (SIMSET) rule provides the best performance for mean flow time and number of tardy jobs measures. The job with similar setup and modified earliest due date (JMEDD) rule provides the best performance for make- span, maximum flow time, mean tardiness, maximum tardiness, total setups and mean setup time measures.