A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial...A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.展开更多
To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method ...To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.展开更多
针对无人机复杂环境下的全局航迹规划问题,将人工势场法与双向RRTs(Rapidly-exploring random trees)算法结合,提出一种改进双向RRTs算法。首先,目标偏置策略引导采样点以一定概率顺着目标点生成,同时随机树新节点受到障碍物斥力和目标...针对无人机复杂环境下的全局航迹规划问题,将人工势场法与双向RRTs(Rapidly-exploring random trees)算法结合,提出一种改进双向RRTs算法。首先,目标偏置策略引导采样点以一定概率顺着目标点生成,同时随机树新节点受到障碍物斥力和目标点引力的合力影响有效避开障碍物生长,提高航迹搜寻效率,其次对随机树的节点扩展考虑了无人机飞行性能约束条件,最后采用3阶贝塞尔函数进一步航迹优化。仿真结果表明:二维和三维复杂环境中改进双向RRTs算法相比传统RRT、双向RRTs算法航迹搜索耗时减少了71.3%、24.7%和41.0%、18.6%,验证了改进算法全局搜索能力的快速性和有效性,能很好的应用于无人机离线全局航迹规划场合。展开更多
针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP...针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP路径规划算法.在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力.采用重采样策略改进DP算法,优化避障代价与控制点数量.实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.展开更多
For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence a...For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence and local optimum.Firstly,the pheromone updating mechanism of ant colony is designed by a hybrid strategy of global map updating and local grids updating.Then,some angles between the vectors of artificial potential field and the orientations of current grid are introduced to calculate the visibility of eight-neighbor cells of cellular automata,which are adopted as ant colony's inspiring factor to calculate the transition probability based on the pseudo-random transition rule cellular automata.Finally,mobile robot dynamic path planning and the simulation experiments are completed by this algorithm,and the experimental results show that the method is feasible and effective.展开更多
With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater envir...With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.展开更多
针对快速扩展随机树(rapidly-exploring random tree,RRT)^(*)算法应用于无人机(unmanned aerial vehicle,UAV)航迹规划时采样效率低、收敛速度慢、航迹代价大的问题,采用势场法引导树扩展加快算法收敛速度。采用优化算法重选父节点及...针对快速扩展随机树(rapidly-exploring random tree,RRT)^(*)算法应用于无人机(unmanned aerial vehicle,UAV)航迹规划时采样效率低、收敛速度慢、航迹代价大的问题,采用势场法引导树扩展加快算法收敛速度。采用优化算法重选父节点及重新布线,生成比RRT^(*)算法代价更小的初始航迹。基于初始航迹构建启发式采样区域,以更有效地优化初始航迹,给出一种改进RRT^(*)算法;基于模型预测控制,设计航迹规划策略,UAV在飞行中能良好地应对环境中的动态威胁。数学仿真实验结果表明,改进算法能快速地生成代价更小的初始航迹,并在后续航迹优化的过程中更有效地减少航迹代价,可被应用于无人机在线规划任务。展开更多
针对RRT(rapidly-exploring random tree)算法在进行机械臂路径规划过程中存在的拓展导向性差、冗余节点多、路径质量差等问题,提出了一种基于AGD-RRT(adaptive goal-directed RRT)的算法。首先,该算法构建了一种动态的目标偏向概率函数...针对RRT(rapidly-exploring random tree)算法在进行机械臂路径规划过程中存在的拓展导向性差、冗余节点多、路径质量差等问题,提出了一种基于AGD-RRT(adaptive goal-directed RRT)的算法。首先,该算法构建了一种动态的目标偏向概率函数,实时调整对目标点进行采样的概率以达到自适应目标导向的效果,减少了无用节点的生成,提高了收敛速度。其次,采用贪婪收敛策略,防止了随机树在目标周围时的盲目扩张。搜索结束后,采用节点剔除法剔除路径中的冗余节点,并用B样条曲线对轨迹进行平滑处理,提高了路径质量。然后在二维、三维环境中进行了对比仿真实验,验证了该算法的可行性与优越性。最后进行了样机实验,验证了所提算法在机械臂关节空间进行路径规划的可行性。展开更多
In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone ...In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.展开更多
针对传统快速扩展随机树(rapidly-exploring random tree star,RRT^(*))算法在全局路径规划过程中存在收敛速度慢、搜索路径不平滑、内存占用多等问题,提出了一种RRT^(*)与人工势场法(artificial potential field,APF)的融合搜索算法。...针对传统快速扩展随机树(rapidly-exploring random tree star,RRT^(*))算法在全局路径规划过程中存在收敛速度慢、搜索路径不平滑、内存占用多等问题,提出了一种RRT^(*)与人工势场法(artificial potential field,APF)的融合搜索算法。为了加快RRT^(*)算法在搜索过程中的收敛速度,在算法中利用人工势场法的思想引导扩展随机树快速向目标点生长;对融合算法在空间中的采样范围做出改进,使算法在APF产生的合力特定范围内进行采样,提高算法在空间中的搜索效率,减少无用节点的扩展。仿真结果表明:相比传统的RRT和RRT^(*)算法以及APF-RRT融合算法,APF-RRT^(*)融合算法能够规划出更短、更平滑的路径,路径距离缩短了1.5%~10.83%;算法的搜索时间也显著缩短了1.97%~49.78%;与其他算法相比,APF-RRT^(*)融合算法的路径节点数量减少了4.66%~41.95%,路径平滑性也得到了提高。展开更多
针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势...针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势场法的思想,设定动态步长加快算法的收敛,提升算法在障碍物空间的探索效率,当算法陷入局部极小值时,采用节点拒绝策略快速脱离。最后,将规划路径进行简化处理,并利用B样条曲线平滑拐点提高路径质量。仿真结果表明,改进算法相比传统RRT算法,扩展更具导向性,收敛速度更快,可以有效避免局部极小值。展开更多
文摘A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF) articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise from initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.
基金Supported by the National High Technology Research and Development Programme of China( No. 2006AA04Z245 ) and China Postdoctoral Science Foundation ( No. 200904500988 ).
文摘To overcome the shortcomings of the traditional artificial potential field method in mobile robot path planning, an improved artificial potential field model (IAPFM) was established, then a new path planning method combining the IAPFM with optimization algorithm (trust region algorithm) is proposed. Attractive force between the robot and the target location, and repulsive force between the robot and the obstacles are both converted to the potential field intensity; and filled potential field is used to guide the robot to go out of the local minimum points ; on this basis, the effect of dynamic obstacles velocity and the robot's velocity is consid thers and the IAPFM is established, then both the expressions of the attractive potential field and the repulsive potential field are obtained. The trust region algorithm is used to search the minimum value of the sum of all the potential field inten- sities within the movement scope which the robot can arrive in a sampling period. Connecting of all the points which hare the minimum intensity in every sampling period constitutes the global optimization path. Experiment result shows that the method can meet the real-time requirement, and is able to execute the mobile robot path planning task effectively in the dynamic environment.
文摘针对无人机复杂环境下的全局航迹规划问题,将人工势场法与双向RRTs(Rapidly-exploring random trees)算法结合,提出一种改进双向RRTs算法。首先,目标偏置策略引导采样点以一定概率顺着目标点生成,同时随机树新节点受到障碍物斥力和目标点引力的合力影响有效避开障碍物生长,提高航迹搜寻效率,其次对随机树的节点扩展考虑了无人机飞行性能约束条件,最后采用3阶贝塞尔函数进一步航迹优化。仿真结果表明:二维和三维复杂环境中改进双向RRTs算法相比传统RRT、双向RRTs算法航迹搜索耗时减少了71.3%、24.7%和41.0%、18.6%,验证了改进算法全局搜索能力的快速性和有效性,能很好的应用于无人机离线全局航迹规划场合。
文摘针对基本的快速拓展随机树算法(rapidly-exploring random tree,RRT^(*))存在搜索随机性大、效率低、路径非最优的缺点,提出一种引入人工势场法算法(artificial potential field method,APF)和Douglas-Peucker算法的改进RRT^(*)-APF-DP路径规划算法.在RRT*算法的采样点生成阶段引入变采样范围偏置搜索与步长自适应调整策略,融合重新设计的APF算法的引力与斥力函数,增强路径扩展导向性与绕过障碍物能力.采用重采样策略改进DP算法,优化避障代价与控制点数量.实验结果表明,本算法规划的避障路径满足机械臂的运动要求,且算法规划的避障路径代价、规划时间和路径控制节点数均得到有效改善.
基金National Natural Science Foundation of China(No.61373110)the Science-Technology Project of Wuhan,China(No.2014010101010005)
文摘For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence and local optimum.Firstly,the pheromone updating mechanism of ant colony is designed by a hybrid strategy of global map updating and local grids updating.Then,some angles between the vectors of artificial potential field and the orientations of current grid are introduced to calculate the visibility of eight-neighbor cells of cellular automata,which are adopted as ant colony's inspiring factor to calculate the transition probability based on the pseudo-random transition rule cellular automata.Finally,mobile robot dynamic path planning and the simulation experiments are completed by this algorithm,and the experimental results show that the method is feasible and effective.
基金supported by Research Program supported by the National Natural Science Foundation of China(No.62201249)the Jiangsu Agricultural Science and Technology Innovation Fund(No.CX(21)1007)+2 种基金the Open Project of the Zhejiang Provincial Key Laboratory of Crop Harvesting Equipment and Technology(Nos.2021KY03,2021KY04)University-Industry Collaborative Education Program(No.201801166003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_1042).
文摘With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.
文摘针对快速扩展随机树(rapidly-exploring random tree,RRT)^(*)算法应用于无人机(unmanned aerial vehicle,UAV)航迹规划时采样效率低、收敛速度慢、航迹代价大的问题,采用势场法引导树扩展加快算法收敛速度。采用优化算法重选父节点及重新布线,生成比RRT^(*)算法代价更小的初始航迹。基于初始航迹构建启发式采样区域,以更有效地优化初始航迹,给出一种改进RRT^(*)算法;基于模型预测控制,设计航迹规划策略,UAV在飞行中能良好地应对环境中的动态威胁。数学仿真实验结果表明,改进算法能快速地生成代价更小的初始航迹,并在后续航迹优化的过程中更有效地减少航迹代价,可被应用于无人机在线规划任务。
文摘针对RRT(rapidly-exploring random tree)算法在进行机械臂路径规划过程中存在的拓展导向性差、冗余节点多、路径质量差等问题,提出了一种基于AGD-RRT(adaptive goal-directed RRT)的算法。首先,该算法构建了一种动态的目标偏向概率函数,实时调整对目标点进行采样的概率以达到自适应目标导向的效果,减少了无用节点的生成,提高了收敛速度。其次,采用贪婪收敛策略,防止了随机树在目标周围时的盲目扩张。搜索结束后,采用节点剔除法剔除路径中的冗余节点,并用B样条曲线对轨迹进行平滑处理,提高了路径质量。然后在二维、三维环境中进行了对比仿真实验,验证了该算法的可行性与优越性。最后进行了样机实验,验证了所提算法在机械臂关节空间进行路径规划的可行性。
基金This work was supported by the Postdoctoral Fund of FDCT,Macao(Grant No.0003/2021/APD).Any opinions,findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the sponsor.
文摘In view of the complex marine environment of navigation,especially in the case of multiple static and dynamic obstacles,the traditional obstacle avoidance algorithms applied to unmanned surface vehicles(USV)are prone to fall into the trap of local optimization.Therefore,this paper proposes an improved artificial potential field(APF)algorithm,which uses 5G communication technology to communicate between the USV and the control center.The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios.Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks,the algorithm introduces the concept of dynamic artificial potential field.For the multiple obstacles encountered in the process of USV sailing,based on the International Regulations for Preventing Collisions at Sea(COLREGS),the USV determines whether the next step will fall into local optimization through the discriminationmechanism.The local potential field of the USV will dynamically adjust,and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions.The objective function and cost function are designed at the same time,so that the USV can smoothly switch between the global path and the local obstacle avoidance.The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment,and take navigation time and economic cost into account.
文摘针对传统快速扩展随机树(rapidly-exploring random tree star,RRT^(*))算法在全局路径规划过程中存在收敛速度慢、搜索路径不平滑、内存占用多等问题,提出了一种RRT^(*)与人工势场法(artificial potential field,APF)的融合搜索算法。为了加快RRT^(*)算法在搜索过程中的收敛速度,在算法中利用人工势场法的思想引导扩展随机树快速向目标点生长;对融合算法在空间中的采样范围做出改进,使算法在APF产生的合力特定范围内进行采样,提高算法在空间中的搜索效率,减少无用节点的扩展。仿真结果表明:相比传统的RRT和RRT^(*)算法以及APF-RRT融合算法,APF-RRT^(*)融合算法能够规划出更短、更平滑的路径,路径距离缩短了1.5%~10.83%;算法的搜索时间也显著缩短了1.97%~49.78%;与其他算法相比,APF-RRT^(*)融合算法的路径节点数量减少了4.66%~41.95%,路径平滑性也得到了提高。
文摘针对快速随机树(Rapidly-exploring Random Trees,RRT)算法在复杂环境下规划效率低的问题,提出一种基于RRT的机械臂路径规划改进算法。首先,在初始采样时应用角度约束采样策略限制采样区域,提升采样质量。然后,在扩展节点时融合人工势场法的思想,设定动态步长加快算法的收敛,提升算法在障碍物空间的探索效率,当算法陷入局部极小值时,采用节点拒绝策略快速脱离。最后,将规划路径进行简化处理,并利用B样条曲线平滑拐点提高路径质量。仿真结果表明,改进算法相比传统RRT算法,扩展更具导向性,收敛速度更快,可以有效避免局部极小值。