Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behavior...Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behaviors.The Barton-Bandis(B-B) joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints.The B-B model accounts for asperity roughness and strength through the joint roughness coefficient(JRC) and joint wall compressive strength(JCS) parameters.Nevertheless,many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr-Coulomb(M-C) model,which is only appropriate for smooth and non-dilatant joints.This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior.To bridge the B-B and the M C models,this paper aims to provide a linearized implementation of the B-B model using a tangential technique to obtain the equivalent M-C parameters that can satisfy the nonlinear shear behavior of rock joints.These equivalent parameters,namely the equivalent peak cohesion,friction angle,and dilation angle,are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing.The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre-and post-peak regions of shear displacement,respectively.Likewise,the pre-and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established.Verifications of the linearized implementation of the B-B model show that the shear stress-shear displacement curves,the dilation behavior,and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.展开更多
The normal compression tests on intact samples and artificial joints with different saw-tooth shape under cyclic loading and half-sine waves of different frequencies were performed by using Instron1342 servo-controlle...The normal compression tests on intact samples and artificial joints with different saw-tooth shape under cyclic loading and half-sine waves of different frequencies were performed by using Instron1342 servo-controlled material testing machine. The specimens were made artificially with mortar. The loading frequency ranged from 0.005 Hz to 0.1 Hz. The experimental results show that joint closure curves are non-linear and concave up. The stress-deformation curves under cyclic loading exhibit hysteresis and permanent set that diminish rapidly and keep constant finally on successive cycles. Normal displacement successively decreases from the joint J1 to J2, to J3 under the same normal loads regardless of frequency. Considering the loading frequency effect, normal displacement of joint J1 decreases with increasing the loading frequency except that the loading frequency is 0.05 Hz. Normal displacement of joint J2 increases with increasing the loading frequency. Normal displacement of joint J3 increases with increasing the loading frequency when the frequency ranges from 0.005 Hz to 0.05 Hz. Its normal displacement, however, becomes least when the loading frequency is 0.1 Hz.展开更多
To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted ...To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.展开更多
Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones aro...Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.展开更多
The aging behavior of single lap joints(SLJ) in hygrothermal cycles was investigated and compared by using a shearing strength test, Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG/DTG), e...The aging behavior of single lap joints(SLJ) in hygrothermal cycles was investigated and compared by using a shearing strength test, Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG/DTG), energy dispersive spectrometry(EDS) and scanning electronic microscopy(SEM). The temperature/relative humidity was set at 80 ℃/95% and –40 ℃/30% for 20 cycles, 40 cycles, and 60 cycles(one cycle was 12 hours), respectively. The experimental results show that hygrothermal aging significantly decreases the failure strength of adhesive joints. However, the failure displacement increases as the number of aging cycles increases. In addition, hygrothermal aging changes the failure mode of the adhesive joints from a cohesive fracture in un-aged adhesive layers to an interfacial failure of aged adhesive joints.展开更多
The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering t...The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-x Bi solder alloys were investigated. The Cu6 Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3 Sn IMC was formed at the interface between Cu6 Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6 Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs,but excessive Bi(≥ 5 wt%) inhibited the growth of Cu6 Sn5 and Cu3 Sn IMC in Sn-x Bi/Cu microelectronic interconnects. Furthermore, with the Bi contents increasing(Sn-10 Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6 Sn5 layer and the solder.展开更多
A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sa...A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.展开更多
The present study shows that naturally developed fracture surfaces in rocks display the properties of self-affine fractals. Surface roughness can be quantitatively characterized by fractal dimension D and the intercep...The present study shows that naturally developed fracture surfaces in rocks display the properties of self-affine fractals. Surface roughness can be quantitatively characterized by fractal dimension D and the intercept A on the log-log plot of variance: the former describes the irregularity and the later is statistically analogues to the slopes of asperities. In order to confirm the effects of these fractalparameters on the properties and mechanical behavior of rock joints, which have been observed in experiments under both normal andshear loadings, a theoretic model of rock joint is proposed on the basis of contact mechanics. The shape of asperity at contact is assumed to have a sinusoidal form in its representative scale r, with fractal dimension D and the intercept A. The model considers different local contact mechanisms, such as elastic deformation, frictional sliding and tensile fracture of the asperity. The empirical evolution law of surface damage developed in experiment is implemented into the model to up-date geometry of asperity in loading history. The effects of surface roughness characterized by D, A and re on normal and shear deformation of rock joint have been elaborated.展开更多
Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear be...Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris(Po P). Regular joints were simulated by keeping regular asperity with asperity angles of 15°-15° and 30°-30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°-30° and 15°-45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm×298 mm×125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.展开更多
The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior ...The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior around a circular opening in a rock mass having non-persistent open joints using PFC software package. A parallel-bond stress corrosion(PSC) approach was incorporated to drive the failure of rock mass around the circular opening, such that the whole progressive failure process after excavation was reproduced. Based on the determined micro parameters for intact material and joint segments, the failure process around the circular opening agrees very well with that obtained through laboratory experiment. A subsequent parametric study was then carried out to look into the influence of lateral pressure coefficient, joint dip angle and joint persistency on the failure pattern and crack evolution of the rock mass around the circular opening. Three failure patterns identified are step path failure, planar failure and rotation failure depending on the lateral pressure coefficient. Moreover, the increment of joint dip angle and joint persistency aggravates the rock mass failure around the opening. This study offers guideline on stability estimation of underground excavations.展开更多
The basic mechanical behaviors of high density polyethylene electrofusion welded joint at different temperatures were studied by using differently designed specimens in this paper. The results show that the strength o...The basic mechanical behaviors of high density polyethylene electrofusion welded joint at different temperatures were studied by using differently designed specimens in this paper. The results show that the strength of weld bonding plane is higher than that of the pipe and socket materials at room temperature. In order to get the shear strength of electrofusion welded joint, the effective bond lengths were reduced by cutting artificial groove through the socket. The effective bonding length of welded joint to get the shear strength is decreased with decreasing testing temperature. The shear strength and the sensibility to sharp notch of HDPE material increased with decreasing temperature.展开更多
The flip chip package is a kind of advanced electri ca l packages. Due to the requirement of miniaturization, lower weight, higher dens ity and higher performance in the advanced electric package, it is expected that ...The flip chip package is a kind of advanced electri ca l packages. Due to the requirement of miniaturization, lower weight, higher dens ity and higher performance in the advanced electric package, it is expected that flip chip package will soon be a mainstream technology. The silicon chip is dir ectly connected to printing circuit substrate by SnPb solder joints. Also, the u nderfill, a composite of polymer and silica particles, is filled in the gap betw een the chip and substrate around the solder joints to improve the reliabili ty of solder joints. When flip chip package specimen is tested with thermal cycl ing, the cyclic stress/strain response that exists at the underfill interfaces and solder joints may result in interfacial crack initiation and propagation. Therefore, the chip cracking and the interfacial delamination between underfill and chip corner have been investigated in many studies. Also, most researches h ave focused on the effect of fatigue and creep properties of solder joint induce d by the plastic strain alternation and accumulation. The nuderfill must have lo w viscosity in the liquid state and good adhesion to the interface after solidif ying. Also, the mechanical behavior of such epoxy material has much dependen ce on temperature in its glass transition temperature range that is usually cove red by the temperature range of thermal cycling test. Therefore, the materia l behavior of underfill exists a significant non-linearity and the assumption o f linear elastic can lack for accuracy in numerical analysis. Through numerical analysis, this study had some comparisons about the effect of linear and non -linear properties of underfill on strain behaviors around the interface of fli p chip assembly. Especially, the deformation tendency inside solder bumps could be predicted. Also, it is worthily mentioned that we have pointed out which comp onent of plastic strain, thus, either normal or shear, has dominant influence to the fatigue and creep of solder bump, which have not brought up before. About the numerical analysis to the thermal plastic strain occurs in flip chip i nterconnection during thermal cycling test, a commercial finite element software , namely, ANSYS, was employed to simulate the thermal cycling test obeyed by MIL-STD-883C. The temperatures of thermal cycling ranged from -55 ℃ to 125 ℃ with ramp rate of 36 ℃/min and a dwell time of 25 min at peak temperature. T he schematic drawing of diagonal cross-section of flip chip package composed of FR-4 substrate, silicon chip, underfill and solder bump was shown as Fig.1. Th e numerical model was two-dimensional (2-D) with plane strain assumption and o nly one half of the cross-section was modeled due to geometry symmetry. The dim ensions and boundary conditions of numerical model were shown in Fig.2. The symm etric boundary conditions were applied along the left edge of the model, and the left bottom corner was additional constrained in vertical direction to prevent body motion. The finite element meshes of overall and local numerical model was shown as Fig.3. In this study, two cases of material model were used to describe the material behavior of the underfill: the case1 was linear elastic model that assumed Young’s Modulus (E) and thermal expansion coefficient (CTE) were consta nt during thermal cycling; the case2 was MKIN model (in ANSYS) that had nonlinea r temperature-dependent stress-strain relationship and temperature-dependent CTE. The material model applied to the solder bump was ANAND model (in ANSYS) th at described time-dependent plasticity phenomenon of viscoplastic material. Bot h the FR-4 substrate and silicon chip were assumed as temperature-independent elastic material; moreover, FR-4 substrate is orthotropic while silicon chip is isotropic. From the comparison between numerical results of linear and nonlinear material a ssumption of underfill, (i.e. case1 and case2), the quantities of plastic strain around the interconnection from case1 are higher than that in case2. Thus, the linear展开更多
结合钢筋混凝土结构和钢结构的优势,设计一种型钢-螺栓-后浇混凝土装配式剪力墙型钢混合连接。基于ABAQUS有限元软件建立混合连接的剪力墙模型,探究低周往复荷载作用下该混合连接预制剪力墙的受力性能,主要分析模型的破坏形态、受力机...结合钢筋混凝土结构和钢结构的优势,设计一种型钢-螺栓-后浇混凝土装配式剪力墙型钢混合连接。基于ABAQUS有限元软件建立混合连接的剪力墙模型,探究低周往复荷载作用下该混合连接预制剪力墙的受力性能,主要分析模型的破坏形态、受力机制、变形曲线、特征承载力等,并扩展分析了材料强度、轴压比、连接件数量、型钢截面高度等参数对模型受力性能影响。结果表明:装配式剪力墙破坏形态为压弯破坏,破坏时钢连接件仍保持完整,符合“强连接,弱墙肢”的基本设计理念;装配式剪力墙具有较好的承载力、延性和刚度;轴压比对结构承载力影响显著,型钢混合连接间距的增大能有效提升剪力墙延性。建立了型钢混合连接抗剪需求承载力计算模型和公式,并与国内外规范计算值对比分析,公式计算值和BS EN 1992欧洲规范计算值分别与模拟值的误差在15%和20%以内,均可用于型钢混合连接剪力墙竖缝受剪承载力设计参考。展开更多
基金support from the University Transportation Center for Underground Transportation Infrastructure at the Colorado School of Mines for partially funding this research under Grant No.69A3551747118 of the Fixing America's Surface Transportation Act(FAST Act) of U.S.DoT FY2016
文摘Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing,inducing dilation and resulting in nonlinear joint shear strength and shear stress vs.shear displacement behaviors.The Barton-Bandis(B-B) joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints.The B-B model accounts for asperity roughness and strength through the joint roughness coefficient(JRC) and joint wall compressive strength(JCS) parameters.Nevertheless,many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr-Coulomb(M-C) model,which is only appropriate for smooth and non-dilatant joints.This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior.To bridge the B-B and the M C models,this paper aims to provide a linearized implementation of the B-B model using a tangential technique to obtain the equivalent M-C parameters that can satisfy the nonlinear shear behavior of rock joints.These equivalent parameters,namely the equivalent peak cohesion,friction angle,and dilation angle,are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing.The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre-and post-peak regions of shear displacement,respectively.Likewise,the pre-and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established.Verifications of the linearized implementation of the B-B model show that the shear stress-shear displacement curves,the dilation behavior,and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.
基金Projects(50490274 50490272) supported by the National Natural Science Foundation of ChinaProject(2002CB412703) supported by theNational Basic Research Program of China
文摘The normal compression tests on intact samples and artificial joints with different saw-tooth shape under cyclic loading and half-sine waves of different frequencies were performed by using Instron1342 servo-controlled material testing machine. The specimens were made artificially with mortar. The loading frequency ranged from 0.005 Hz to 0.1 Hz. The experimental results show that joint closure curves are non-linear and concave up. The stress-deformation curves under cyclic loading exhibit hysteresis and permanent set that diminish rapidly and keep constant finally on successive cycles. Normal displacement successively decreases from the joint J1 to J2, to J3 under the same normal loads regardless of frequency. Considering the loading frequency effect, normal displacement of joint J1 decreases with increasing the loading frequency except that the loading frequency is 0.05 Hz. Normal displacement of joint J2 increases with increasing the loading frequency. Normal displacement of joint J3 increases with increasing the loading frequency when the frequency ranges from 0.005 Hz to 0.05 Hz. Its normal displacement, however, becomes least when the loading frequency is 0.1 Hz.
基金Project(51078077)supported by the National Natural Science Foundation of China
文摘To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.
基金supported by the National Basic Research Program of China (No.2013CB036003)the Graduate Research and Innovation Program of Jiangsu Province (No.CXLX13_943)
文摘Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency.
基金Funded by the National Natural Science Foundation of China(51775230)the Graduate Innovation Fund of Jilin University(2017013)
文摘The aging behavior of single lap joints(SLJ) in hygrothermal cycles was investigated and compared by using a shearing strength test, Fourier transform infrared spectroscopy(FTIR), thermogravimetric analysis(TG/DTG), energy dispersive spectrometry(EDS) and scanning electronic microscopy(SEM). The temperature/relative humidity was set at 80 ℃/95% and –40 ℃/30% for 20 cycles, 40 cycles, and 60 cycles(one cycle was 12 hours), respectively. The experimental results show that hygrothermal aging significantly decreases the failure strength of adhesive joints. However, the failure displacement increases as the number of aging cycles increases. In addition, hygrothermal aging changes the failure mode of the adhesive joints from a cohesive fracture in un-aged adhesive layers to an interfacial failure of aged adhesive joints.
基金Funded by the National Natural Science Foundation of China(No.51465039)Natural Science Foundation of Jiangxi Province(No.20151BAB206041,20161BAB206122)Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201508)
文摘The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-x Bi solder alloys were investigated. The Cu6 Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3 Sn IMC was formed at the interface between Cu6 Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6 Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs,but excessive Bi(≥ 5 wt%) inhibited the growth of Cu6 Sn5 and Cu3 Sn IMC in Sn-x Bi/Cu microelectronic interconnects. Furthermore, with the Bi contents increasing(Sn-10 Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6 Sn5 layer and the solder.
基金supported by the CNPC (China National Petroleum Corporation) Innovation Foundation under grant No.07E1015
文摘A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.
文摘The present study shows that naturally developed fracture surfaces in rocks display the properties of self-affine fractals. Surface roughness can be quantitatively characterized by fractal dimension D and the intercept A on the log-log plot of variance: the former describes the irregularity and the later is statistically analogues to the slopes of asperities. In order to confirm the effects of these fractalparameters on the properties and mechanical behavior of rock joints, which have been observed in experiments under both normal andshear loadings, a theoretic model of rock joint is proposed on the basis of contact mechanics. The shape of asperity at contact is assumed to have a sinusoidal form in its representative scale r, with fractal dimension D and the intercept A. The model considers different local contact mechanisms, such as elastic deformation, frictional sliding and tensile fracture of the asperity. The empirical evolution law of surface damage developed in experiment is implemented into the model to up-date geometry of asperity in loading history. The effects of surface roughness characterized by D, A and re on normal and shear deformation of rock joint have been elaborated.
基金the financial support of this research from Indian Institute of Technology Delhi
文摘Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris(Po P). Regular joints were simulated by keeping regular asperity with asperity angles of 15°-15° and 30°-30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°-30° and 15°-45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm×298 mm×125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.
基金Project(2013CB036003)supported by the National Basic Research Program of ChinaProjects(51374198,51134001,51404255)supported by the National Natural Science Foundation of ChinaProject(BK20150005)supported by the Natural Science Foundation of Jiangsu Province for Distinguished Youth Scholar,China
文摘The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior around a circular opening in a rock mass having non-persistent open joints using PFC software package. A parallel-bond stress corrosion(PSC) approach was incorporated to drive the failure of rock mass around the circular opening, such that the whole progressive failure process after excavation was reproduced. Based on the determined micro parameters for intact material and joint segments, the failure process around the circular opening agrees very well with that obtained through laboratory experiment. A subsequent parametric study was then carried out to look into the influence of lateral pressure coefficient, joint dip angle and joint persistency on the failure pattern and crack evolution of the rock mass around the circular opening. Three failure patterns identified are step path failure, planar failure and rotation failure depending on the lateral pressure coefficient. Moreover, the increment of joint dip angle and joint persistency aggravates the rock mass failure around the opening. This study offers guideline on stability estimation of underground excavations.
基金This work was supported by the National Natural Science Foundation of China under grant No.50075061.
文摘The basic mechanical behaviors of high density polyethylene electrofusion welded joint at different temperatures were studied by using differently designed specimens in this paper. The results show that the strength of weld bonding plane is higher than that of the pipe and socket materials at room temperature. In order to get the shear strength of electrofusion welded joint, the effective bond lengths were reduced by cutting artificial groove through the socket. The effective bonding length of welded joint to get the shear strength is decreased with decreasing testing temperature. The shear strength and the sensibility to sharp notch of HDPE material increased with decreasing temperature.
文摘The flip chip package is a kind of advanced electri ca l packages. Due to the requirement of miniaturization, lower weight, higher dens ity and higher performance in the advanced electric package, it is expected that flip chip package will soon be a mainstream technology. The silicon chip is dir ectly connected to printing circuit substrate by SnPb solder joints. Also, the u nderfill, a composite of polymer and silica particles, is filled in the gap betw een the chip and substrate around the solder joints to improve the reliabili ty of solder joints. When flip chip package specimen is tested with thermal cycl ing, the cyclic stress/strain response that exists at the underfill interfaces and solder joints may result in interfacial crack initiation and propagation. Therefore, the chip cracking and the interfacial delamination between underfill and chip corner have been investigated in many studies. Also, most researches h ave focused on the effect of fatigue and creep properties of solder joint induce d by the plastic strain alternation and accumulation. The nuderfill must have lo w viscosity in the liquid state and good adhesion to the interface after solidif ying. Also, the mechanical behavior of such epoxy material has much dependen ce on temperature in its glass transition temperature range that is usually cove red by the temperature range of thermal cycling test. Therefore, the materia l behavior of underfill exists a significant non-linearity and the assumption o f linear elastic can lack for accuracy in numerical analysis. Through numerical analysis, this study had some comparisons about the effect of linear and non -linear properties of underfill on strain behaviors around the interface of fli p chip assembly. Especially, the deformation tendency inside solder bumps could be predicted. Also, it is worthily mentioned that we have pointed out which comp onent of plastic strain, thus, either normal or shear, has dominant influence to the fatigue and creep of solder bump, which have not brought up before. About the numerical analysis to the thermal plastic strain occurs in flip chip i nterconnection during thermal cycling test, a commercial finite element software , namely, ANSYS, was employed to simulate the thermal cycling test obeyed by MIL-STD-883C. The temperatures of thermal cycling ranged from -55 ℃ to 125 ℃ with ramp rate of 36 ℃/min and a dwell time of 25 min at peak temperature. T he schematic drawing of diagonal cross-section of flip chip package composed of FR-4 substrate, silicon chip, underfill and solder bump was shown as Fig.1. Th e numerical model was two-dimensional (2-D) with plane strain assumption and o nly one half of the cross-section was modeled due to geometry symmetry. The dim ensions and boundary conditions of numerical model were shown in Fig.2. The symm etric boundary conditions were applied along the left edge of the model, and the left bottom corner was additional constrained in vertical direction to prevent body motion. The finite element meshes of overall and local numerical model was shown as Fig.3. In this study, two cases of material model were used to describe the material behavior of the underfill: the case1 was linear elastic model that assumed Young’s Modulus (E) and thermal expansion coefficient (CTE) were consta nt during thermal cycling; the case2 was MKIN model (in ANSYS) that had nonlinea r temperature-dependent stress-strain relationship and temperature-dependent CTE. The material model applied to the solder bump was ANAND model (in ANSYS) th at described time-dependent plasticity phenomenon of viscoplastic material. Bot h the FR-4 substrate and silicon chip were assumed as temperature-independent elastic material; moreover, FR-4 substrate is orthotropic while silicon chip is isotropic. From the comparison between numerical results of linear and nonlinear material a ssumption of underfill, (i.e. case1 and case2), the quantities of plastic strain around the interconnection from case1 are higher than that in case2. Thus, the linear
文摘结合钢筋混凝土结构和钢结构的优势,设计一种型钢-螺栓-后浇混凝土装配式剪力墙型钢混合连接。基于ABAQUS有限元软件建立混合连接的剪力墙模型,探究低周往复荷载作用下该混合连接预制剪力墙的受力性能,主要分析模型的破坏形态、受力机制、变形曲线、特征承载力等,并扩展分析了材料强度、轴压比、连接件数量、型钢截面高度等参数对模型受力性能影响。结果表明:装配式剪力墙破坏形态为压弯破坏,破坏时钢连接件仍保持完整,符合“强连接,弱墙肢”的基本设计理念;装配式剪力墙具有较好的承载力、延性和刚度;轴压比对结构承载力影响显著,型钢混合连接间距的增大能有效提升剪力墙延性。建立了型钢混合连接抗剪需求承载力计算模型和公式,并与国内外规范计算值对比分析,公式计算值和BS EN 1992欧洲规范计算值分别与模拟值的误差在15%和20%以内,均可用于型钢混合连接剪力墙竖缝受剪承载力设计参考。