Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properti...Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.展开更多
To investigate the effect of Au thickness on evolution of AuSnx IMCs, pads with 0. 1, 0. 5 and 4. 0 μm thickness of Au surface finish were utilized. Laser reflowed solder joints were aged in 125℃ isothermal ovens. R...To investigate the effect of Au thickness on evolution of AuSnx IMCs, pads with 0. 1, 0. 5 and 4. 0 μm thickness of Au surface finish were utilized. Laser reflowed solder joints were aged in 125℃ isothermal ovens. Results indicated that little IMC formed at the interface of solder and pad with 0. 1 μm thickness of Au. Even in condition of 744 hours aging, thickness of lMCs did not increase obviously. As for the joints with 0. 5 μm thickness of Au, most of AuSn4 IMCs stayed at the inteornce and were in needle-like or dendritic morphology. With the increase of aging time, AuSn4 IMCs beeame flat and changed to a continuous layer. In the joints with 4. 0 μm thickness of Au on pads, AuSn, AuSn2, AuSn4 IMCs and Au2Sn phase formed at the interface. As aging time was increased, more Sn rich IMCs formed at the interface, and evolved to AuSn4 IMCs in condition of long time aging. Thickness of AuSn4 IMCs reached about 30μm.展开更多
In this paper, we study the compound binomial model in Markovian environment, which is proposed by Cossette, et al. (2003). We obtain the recursive formula of the joint distributions of T, X(T - 1) and |X(T)|...In this paper, we study the compound binomial model in Markovian environment, which is proposed by Cossette, et al. (2003). We obtain the recursive formula of the joint distributions of T, X(T - 1) and |X(T)|(i.e., the time of ruin, the surplus before ruin and the deficit at ruin) by the method of mass function of up-crossing zero points, as given by Liu and Zhao (2007). By using the same method, the recursive formula of supremum distribution is obtained. An example is included to illustrate the results of the model.展开更多
The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au fi...The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.展开更多
The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering t...The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-x Bi solder alloys were investigated. The Cu6 Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3 Sn IMC was formed at the interface between Cu6 Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6 Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs,but excessive Bi(≥ 5 wt%) inhibited the growth of Cu6 Sn5 and Cu3 Sn IMC in Sn-x Bi/Cu microelectronic interconnects. Furthermore, with the Bi contents increasing(Sn-10 Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6 Sn5 layer and the solder.展开更多
基金Universiti Kebangsaan Malaysia for supporting this research project through the research funding (AP-2015-016)
文摘Joining Mg to Al is challenging because of the deterioration of mechanical properties caused by the formation of intermetallic compounds(IMCs) at the Mg/Al interface. This study aims to improve the mechanical properties of welded samples by preventing the fracture location at the Mg/Al interface. Friction stir welding was performed to join Mg to Al at different rotational and travel speeds. The microstructure of the welded samples showed the IMCs layers containing Al12Mg17(γ) and Al3Mg2(β) at the welding zone with a thickness(< 3.5 μm). Mechanical properties were mainly affected by the thickness of the IMCs, which was governed by welding parameters. The highest tensile strength was obtained at 600 r/min and 40 mm/min with a welding efficiency of 80%. The specimens could fracture along the boundary at the thermo-mechanically affected zone in the Mg side of the welded joint.
基金Acknowledgement This work is finaneially supported by the National Natural Science Foundation of China (Grant No. 51005058), National Hight- eeh R&D Program (863 Program ) of China (Grant No. 2007AA04Z314) and Natural Scientific Research Innovation Foundation in Harbin Institute of Technology ( HIT. NSRIF. 2009037 ).
文摘To investigate the effect of Au thickness on evolution of AuSnx IMCs, pads with 0. 1, 0. 5 and 4. 0 μm thickness of Au surface finish were utilized. Laser reflowed solder joints were aged in 125℃ isothermal ovens. Results indicated that little IMC formed at the interface of solder and pad with 0. 1 μm thickness of Au. Even in condition of 744 hours aging, thickness of lMCs did not increase obviously. As for the joints with 0. 5 μm thickness of Au, most of AuSn4 IMCs stayed at the inteornce and were in needle-like or dendritic morphology. With the increase of aging time, AuSn4 IMCs beeame flat and changed to a continuous layer. In the joints with 4. 0 μm thickness of Au on pads, AuSn, AuSn2, AuSn4 IMCs and Au2Sn phase formed at the interface. As aging time was increased, more Sn rich IMCs formed at the interface, and evolved to AuSn4 IMCs in condition of long time aging. Thickness of AuSn4 IMCs reached about 30μm.
基金Supported by the National Natural Science Foundation of China (10671176, 10771192, 70871103)
文摘In this paper, we study the compound binomial model in Markovian environment, which is proposed by Cossette, et al. (2003). We obtain the recursive formula of the joint distributions of T, X(T - 1) and |X(T)|(i.e., the time of ruin, the surplus before ruin and the deficit at ruin) by the method of mass function of up-crossing zero points, as given by Liu and Zhao (2007). By using the same method, the recursive formula of supremum distribution is obtained. An example is included to illustrate the results of the model.
文摘The influence of thermal cycling on the microstructure and joint strength of Sn3.5Ag0.75Cu (SAC) and Sn63Pb37 (SnPb) solder joints was investigated. SAC and SnPb solder balls were soldered on 0.1 and 0.9 μm Au finished metallization, respectively. After 1000 thermal cycles between -40℃ and 125℃, a very thin intermetallic compound (IMC) layer containing Au, Sn, Ni, and Cu formed at the interface between SAC solder joints and underneath metallization with 0.1 μm Au finish, and (Au, Ni, Cu)Sn4 and a very thin AuSn-Ni-Cu IMC layer formed between SAC solder joints and underneath metallization with 0.9 μm Au finish. For SnPb solder joints with 0.1 μm Au finish, a thin (Ni, Cu, Au)3Sn4 IMC layer and a Pb-rich layer formed below and above the (Au, Ni)Sn4 IMC, respectively. Cu diffused through Ni layer and was involved into the IMC formation process. Similar interfacial microstructure was also found for SnPb solder joints with 0.9μm Au finish. The results of shear test show that the shear strength of SAC solder joints is consistently higher than that of SnPb eutectic solder joints during thermal cycling.
基金Funded by the National Natural Science Foundation of China(No.51465039)Natural Science Foundation of Jiangxi Province(No.20151BAB206041,20161BAB206122)Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201508)
文摘The effects of different Bi contents on the properties of Sn solders were studied. The interfacial reaction and growth behavior of intermetallic compounds(IMCs) layer(η-Cu6 Sn5 + e-Cu3 Sn) for various soldering time and the influence of Bi addition on the thermal behavior of Sn-x Bi solder alloys were investigated. The Cu6 Sn5 IMC could be observed as long as the molten solder contacted with the Cu substrate. However, with the longer welding time such as 60 and 300 s, the Cu3 Sn IMC was formed at the interface between Cu6 Sn5 and Cu substrate. With the increase of soldering time, the thickness of total IMCs increased, meanwhile, the grain size of Cu6 Sn5 also increased. An appropriate amount of Bi element was beneficial for the growth of total IMCs,but excessive Bi(≥ 5 wt%) inhibited the growth of Cu6 Sn5 and Cu3 Sn IMC in Sn-x Bi/Cu microelectronic interconnects. Furthermore, with the Bi contents increasing(Sn-10 Bi solder in this present investigation), some Bi particles accumulated at the interface between Cu6 Sn5 layer and the solder.