As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of win...As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of wind speed and direction using grouped data of wind rose.On the basis of the model,an algorithm is presented to generate pseudorandom numbers of wind speed and paired direction data.Afterward,the proposed model and algorithm are applied to two weather stations located in the Liaodong Gulf.With the models built for the two cases,a novel graph representing the continuous joint probability distribution of wind speed and direction is plotted,showing a strong correlation to the corresponding wind rose.Moreover,the joint probability distributions are utilized to evaluate wind energy potential successfully.In cooperation with Monte Carlo simulation,the model can approximately predict annual directional extreme wind speed under different return periods under the condition that the wind rose can represent the meteorological characters of the wind field well.The model is beneficial to design and install wind turbines.展开更多
The joint probability distribution of wind speed and significant wave height in the Bohai Bay was investigated by comparing the Gurnbel logistic model, the Gumbel-Hougaard (GH) copula function, and the Clayton copul...The joint probability distribution of wind speed and significant wave height in the Bohai Bay was investigated by comparing the Gurnbel logistic model, the Gumbel-Hougaard (GH) copula function, and the Clayton copula function. Twenty years of wind data from 1989 to 2008 were collected from the European Centre for Medium-Range Weather Forecasts (ECMWF) database and the blended wind data of the Quick Scatterometer (QSCAT) satellite data set and re-analysis data from the United States National Centers for Environmental Prediction (NCEP). Several typhoons were taken into account and merged with the background wind fields from the ECMWF or QSCAT/NCEP database. The 20-year data of significant wave height were calculated with the unstructured-grid version of the third-generation wind wave model Simulating WAves Nearshore (SWAN) under extreme wind process conditions. The Gumbel distribution was used for univariate and marginal distributions. The distribution parameters were estimated with the method of L-moments. Based on the marginal distributions, the joint probability distributions, the associated return periods, and the conditional probability distributions were obtained. The GH copula function was found to be optimal according to the ordinary least squares (OLS) test. The results show that wind waves are the prevailing type of wave in the Bohai Bay.展开更多
The joint design criteria of significant wave heights and wind speeds are quite important for the structural reliability of fixed offshore platforms.However,the design method that regards different ocean environmental...The joint design criteria of significant wave heights and wind speeds are quite important for the structural reliability of fixed offshore platforms.However,the design method that regards different ocean environmental variables as independent is conservative.In the present study,we introduce a bivariate sample consisting of the maximum wave heights and concomitant wind speeds of the threshold by using the peak-over-threshold and declustering methods.After selecting the appropriate bivariate copulas and univariate distributions and blocking the sample into years,the bivariate compound distribution of annual extreme wave heights and concomitant wind speeds is constructed.Two joint design criteria,namely,the joint probability density method and the conditional probability method,are applied to obtain the joint return values of significant wave heights and wind speeds.Results show that(28.5±0.5)m s^(-1)is the frequently obtained wind speed based on the Atlantic dataset,and these joint design values are more appropriate than those calculated by univariate analysis in the fatigue design.展开更多
Multiple disasters such as strong wind and torrential rain pose great threats to civil infrastructures.However,most existing studies ignored the dependence structure between them,as well as the effect of wind directio...Multiple disasters such as strong wind and torrential rain pose great threats to civil infrastructures.However,most existing studies ignored the dependence structure between them,as well as the effect of wind direction.From the dimension of the engineering sector,this paper introduces the vine copula to model the joint probability distribution(JPD)of wind speed,wind direction and rain intensity based on the field data in Yangjiang,China during 1971–2020.First,the profiles of wind and rain in the studied area are statistically analyzed,and the original rainfall amounts are converted into short-term rain intensity.Then,the marginal distributions of individual variables and their pairwise dependence structures are built,followed by the development of the trivariate joint distribution model.The results show that the constructed vine copula-based model can well characterize the dependence structure between wind speed,wind direction and rain intensity.Meanwhile,the JPD characteristics of wind speed and rain intensity show significant variations depending on wind direction,thus the effect of wind direction cannot be neglected.The proposed JPD model will be conducive for reasonable and precise performance assessment of structures subjected to multiple hazards of wind and rain actions.展开更多
基金The study was supported by the National Key Research and Development Program of China(No.2016YFC0303401)the National Natural Science Foundation of China(No.51779236)the National Natural Science Foundation of China-Shandong Joint Fund(No.U1706226).
文摘As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of wind speed and direction using grouped data of wind rose.On the basis of the model,an algorithm is presented to generate pseudorandom numbers of wind speed and paired direction data.Afterward,the proposed model and algorithm are applied to two weather stations located in the Liaodong Gulf.With the models built for the two cases,a novel graph representing the continuous joint probability distribution of wind speed and direction is plotted,showing a strong correlation to the corresponding wind rose.Moreover,the joint probability distributions are utilized to evaluate wind energy potential successfully.In cooperation with Monte Carlo simulation,the model can approximately predict annual directional extreme wind speed under different return periods under the condition that the wind rose can represent the meteorological characters of the wind field well.The model is beneficial to design and install wind turbines.
基金supported by the Science Fund for Creative Research Groups of the National Natural ScienceFoundation of China (Grant No. 51021004)the National High Technology Research and DevelopmentProgram of China (863 Program, Grants No. 2012AA112509 and 2012AA051702)
文摘The joint probability distribution of wind speed and significant wave height in the Bohai Bay was investigated by comparing the Gurnbel logistic model, the Gumbel-Hougaard (GH) copula function, and the Clayton copula function. Twenty years of wind data from 1989 to 2008 were collected from the European Centre for Medium-Range Weather Forecasts (ECMWF) database and the blended wind data of the Quick Scatterometer (QSCAT) satellite data set and re-analysis data from the United States National Centers for Environmental Prediction (NCEP). Several typhoons were taken into account and merged with the background wind fields from the ECMWF or QSCAT/NCEP database. The 20-year data of significant wave height were calculated with the unstructured-grid version of the third-generation wind wave model Simulating WAves Nearshore (SWAN) under extreme wind process conditions. The Gumbel distribution was used for univariate and marginal distributions. The distribution parameters were estimated with the method of L-moments. Based on the marginal distributions, the joint probability distributions, the associated return periods, and the conditional probability distributions were obtained. The GH copula function was found to be optimal according to the ordinary least squares (OLS) test. The results show that wind waves are the prevailing type of wave in the Bohai Bay.
基金the National Natural Science Foundation of China(No.52171284)。
文摘The joint design criteria of significant wave heights and wind speeds are quite important for the structural reliability of fixed offshore platforms.However,the design method that regards different ocean environmental variables as independent is conservative.In the present study,we introduce a bivariate sample consisting of the maximum wave heights and concomitant wind speeds of the threshold by using the peak-over-threshold and declustering methods.After selecting the appropriate bivariate copulas and univariate distributions and blocking the sample into years,the bivariate compound distribution of annual extreme wave heights and concomitant wind speeds is constructed.Two joint design criteria,namely,the joint probability density method and the conditional probability method,are applied to obtain the joint return values of significant wave heights and wind speeds.Results show that(28.5±0.5)m s^(-1)is the frequently obtained wind speed based on the Atlantic dataset,and these joint design values are more appropriate than those calculated by univariate analysis in the fatigue design.
基金supported by the National Natural Science Foundation of China (Grant Nos.52178489 and 52078106)the Young Scholars Program of Shandong University (Grant No.2017WLJH33)。
文摘Multiple disasters such as strong wind and torrential rain pose great threats to civil infrastructures.However,most existing studies ignored the dependence structure between them,as well as the effect of wind direction.From the dimension of the engineering sector,this paper introduces the vine copula to model the joint probability distribution(JPD)of wind speed,wind direction and rain intensity based on the field data in Yangjiang,China during 1971–2020.First,the profiles of wind and rain in the studied area are statistically analyzed,and the original rainfall amounts are converted into short-term rain intensity.Then,the marginal distributions of individual variables and their pairwise dependence structures are built,followed by the development of the trivariate joint distribution model.The results show that the constructed vine copula-based model can well characterize the dependence structure between wind speed,wind direction and rain intensity.Meanwhile,the JPD characteristics of wind speed and rain intensity show significant variations depending on wind direction,thus the effect of wind direction cannot be neglected.The proposed JPD model will be conducive for reasonable and precise performance assessment of structures subjected to multiple hazards of wind and rain actions.