The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-...The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.展开更多
It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but th...It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but the errors of the ground reflection coefficient and the reflecting surface height have serious influence on the method.In this paper,a robust es-timation method with less computation burden is proposed based on the compound reflection coefficient multipath model for low-angle targets.The compound reflection coefficient is es-timated from the received data of the array and then a one-di-mension generalized steering vector is constructed to estimate the target height.The algorithm is robust to the reflecting sur-face height error and the ground reflection coefficient error.Fi-nally,the experiment and simulation results demonstrate the validity of the proposed method.展开更多
The problem of estimating direction of arrivals (DOA) and Doppler frequency for many sources is considered in the presence of general array errors (such as amplitude and phase error of sensors, setting position error ...The problem of estimating direction of arrivals (DOA) and Doppler frequency for many sources is considered in the presence of general array errors (such as amplitude and phase error of sensors, setting position error of sensors). Adopting direct array manifold in a uniform circular array (UCA), the estimation of Doppler frequency can be obtained by DOA matrix. Based on analyzing the statistic characters of general array errors, the estimation of DOA can be obtained by Weight Total Least Squares. Numerical results illustrate that the estimator is robust to general array errors and show the capabilities of the estimator.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
A novel rotational invariance technique for blind estimates of direction of arrival (I)OA) and Doppler frequency with unknown array manifold due to array sensor uncertainties is proposed, taking Doppler frequency diff...A novel rotational invariance technique for blind estimates of direction of arrival (I)OA) and Doppler frequency with unknown array manifold due to array sensor uncertainties is proposed, taking Doppler frequency difference between a successive pulses as rotational parameter. The effectiveness of the new method is confirmed by computer simulation. Compared with the existing 2-D DOA-frequeucy estimate techniques, the computation load of the proposed method can be saved greatly.展开更多
In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the r...In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the rainfall estimation model of radar combined with rain gauge which calibrated by common Kalman filter.After data preprocessing,the radar data should be classified according to the precipitation intensity.And then,they are respectively substituted into the improved filter for calibration.The state noise variance Q(k)and the measurement noise variance R(k)can be adaptively calculated and updated according to the input observation data during this process.Then the optimal parameter value of each type of precipitation intensity can be obtained.The state noise variance Q(k)and the measurement noise variance R(k)could be assigned optimal values when filtering the remaining data.This rainfall estimation based on semiadaptive Kalman filter calibration not only improves the accuracy of rainfall estimation,but also greatly reduces the amount of calculation.It avoids errors caused by repeated calculations,and improves the efficiency of the rainfall estimation at the same time.展开更多
文中提出了一种利用少量传感器和少量快拍实现多目标波达时间(Time of Arrival,TOA)和波达方向(Direction Of Arrival,DOA)联合估计的方法。该方法设计了一种基于移动平台的完全稀疏阵列,保证不同时间的阵列位置合成后不存在重叠,并且...文中提出了一种利用少量传感器和少量快拍实现多目标波达时间(Time of Arrival,TOA)和波达方向(Direction Of Arrival,DOA)联合估计的方法。该方法设计了一种基于移动平台的完全稀疏阵列,保证不同时间的阵列位置合成后不存在重叠,并且通过差分变换可以得到更大的阵列孔径。同时,考虑了载波频率变换场景下一种新的稀疏采样方法,可以利用少量的快拍得到大量的虚拟数据,进而能够实现小快拍条件下TOA/DOA的精确估计。仿真结果表明,与传统的均匀线性阵列结合均匀采样的方式相比,文中所提方法能够识别更多的目标。同时,该方法的估计精度优于基于固定平台的嵌套阵列结合嵌套采样的方式。展开更多
为了有效辅助跳频(FH)网台分选和信号识别、跟踪,该文用正交偶极子对构造极化敏感阵列,基于空间极化时频分析,在欠定条件下实现了多跳频信号波达方向(Direction Of Arrival,DOA)与极化状态的高效联合估计。首先建立跳频信号的极化敏感...为了有效辅助跳频(FH)网台分选和信号识别、跟踪,该文用正交偶极子对构造极化敏感阵列,基于空间极化时频分析,在欠定条件下实现了多跳频信号波达方向(Direction Of Arrival,DOA)与极化状态的高效联合估计。首先建立跳频信号的极化敏感阵列观察模型,然后根据参考阵元时频分析结果建立各跳信号的空间极化时频分布矩阵,再利用该矩阵中蕴含的信号极化-空域特征信息分别运用线性、二次型空间极化时频以及多项式求根共3种方法实现DOA与极化参数联合估计,最后蒙特卡罗仿真结果验证了该算法的有效性。展开更多
基金supported in part by the Funding for Outstanding Doctoral Dissertation in NUAA (No.BCXJ1503)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX15_0281)the Fundamental Research Funds for the Central Universities
文摘The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61771367)the Science and Technology on Communication Networks Laboratory(6142104190204).
文摘It is always a challenging issue for radar systems to estimate the height of a low-angle target in the multipath propagation environment.The highly deterministic maximum likelihood estimator has a high accuracy,but the errors of the ground reflection coefficient and the reflecting surface height have serious influence on the method.In this paper,a robust es-timation method with less computation burden is proposed based on the compound reflection coefficient multipath model for low-angle targets.The compound reflection coefficient is es-timated from the received data of the array and then a one-di-mension generalized steering vector is constructed to estimate the target height.The algorithm is robust to the reflecting sur-face height error and the ground reflection coefficient error.Fi-nally,the experiment and simulation results demonstrate the validity of the proposed method.
文摘The problem of estimating direction of arrivals (DOA) and Doppler frequency for many sources is considered in the presence of general array errors (such as amplitude and phase error of sensors, setting position error of sensors). Adopting direct array manifold in a uniform circular array (UCA), the estimation of Doppler frequency can be obtained by DOA matrix. Based on analyzing the statistic characters of general array errors, the estimation of DOA can be obtained by Weight Total Least Squares. Numerical results illustrate that the estimator is robust to general array errors and show the capabilities of the estimator.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
基金Supported by the National Natural Science Foundation of China
文摘A novel rotational invariance technique for blind estimates of direction of arrival (I)OA) and Doppler frequency with unknown array manifold due to array sensor uncertainties is proposed, taking Doppler frequency difference between a successive pulses as rotational parameter. The effectiveness of the new method is confirmed by computer simulation. Compared with the existing 2-D DOA-frequeucy estimate techniques, the computation load of the proposed method can be saved greatly.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42075007)the Open Grants of the State Key Laboratory of Severe Weather(No.2021LASW-B19).
文摘In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the rainfall estimation model of radar combined with rain gauge which calibrated by common Kalman filter.After data preprocessing,the radar data should be classified according to the precipitation intensity.And then,they are respectively substituted into the improved filter for calibration.The state noise variance Q(k)and the measurement noise variance R(k)can be adaptively calculated and updated according to the input observation data during this process.Then the optimal parameter value of each type of precipitation intensity can be obtained.The state noise variance Q(k)and the measurement noise variance R(k)could be assigned optimal values when filtering the remaining data.This rainfall estimation based on semiadaptive Kalman filter calibration not only improves the accuracy of rainfall estimation,but also greatly reduces the amount of calculation.It avoids errors caused by repeated calculations,and improves the efficiency of the rainfall estimation at the same time.
文摘文中提出了一种利用少量传感器和少量快拍实现多目标波达时间(Time of Arrival,TOA)和波达方向(Direction Of Arrival,DOA)联合估计的方法。该方法设计了一种基于移动平台的完全稀疏阵列,保证不同时间的阵列位置合成后不存在重叠,并且通过差分变换可以得到更大的阵列孔径。同时,考虑了载波频率变换场景下一种新的稀疏采样方法,可以利用少量的快拍得到大量的虚拟数据,进而能够实现小快拍条件下TOA/DOA的精确估计。仿真结果表明,与传统的均匀线性阵列结合均匀采样的方式相比,文中所提方法能够识别更多的目标。同时,该方法的估计精度优于基于固定平台的嵌套阵列结合嵌套采样的方式。
文摘为了有效辅助跳频(FH)网台分选和信号识别、跟踪,该文用正交偶极子对构造极化敏感阵列,基于空间极化时频分析,在欠定条件下实现了多跳频信号波达方向(Direction Of Arrival,DOA)与极化状态的高效联合估计。首先建立跳频信号的极化敏感阵列观察模型,然后根据参考阵元时频分析结果建立各跳信号的空间极化时频分布矩阵,再利用该矩阵中蕴含的信号极化-空域特征信息分别运用线性、二次型空间极化时频以及多项式求根共3种方法实现DOA与极化参数联合估计,最后蒙特卡罗仿真结果验证了该算法的有效性。