Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
In order to evaluate the health status of pigs in time,monitor accurately the disease dynamics of live pigs,and reduce the morbidity and mortality of pigs in the existing large-scale farming model,pig detection and tr...In order to evaluate the health status of pigs in time,monitor accurately the disease dynamics of live pigs,and reduce the morbidity and mortality of pigs in the existing large-scale farming model,pig detection and tracking technology based on machine vision are used to monitor the behavior of pigs.However,it is challenging to efficiently detect and track pigs with noise caused by occlusion and interaction between targets.In view of the actual breeding conditions of pigs and the limitations of existing behavior monitoring technology of an individual pig,this study proposed a method that used color feature,target centroid and the minimum circumscribed rectangle length-width ratio as the features to build a multi-target tracking algorithm,which based on joint probability data association and particle filter.Experimental results show the proposed algorithm can quickly and accurately track pigs in the video,and it is able to cope with partial occlusions and recover the tracks after temporary loss.展开更多
Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-find...Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-finding and property fusion information. The multi-target programming model is transformed into a single target programming problem to resolve, and its data association result is compared with the results which are solved by using one kind of information only. Simulation experiments show the effectiveness of the multi-target programming algorithm with higher data association accuracy and less calculation.展开更多
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too...In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.展开更多
The multi-sensor multi-target localization and data fusion problem is discussed, and a new data fusion method called joint probability density matrix (JPDM) has been proposed, which can associate with and fuse measu...The multi-sensor multi-target localization and data fusion problem is discussed, and a new data fusion method called joint probability density matrix (JPDM) has been proposed, which can associate with and fuse measurements from spatially distributed heterogeneous sensors to produce good estimates of the targets. Based on probabilistic grids representation, the uncertainty regions of all the measurements are numerically combined in a general framework. The NP-hard multi-sensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion methods, the JPDM method does not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.展开更多
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
基金This work was supported by the National High Technology Research and Development Program(863 Plan)(Grant No.2013AA102306).
文摘In order to evaluate the health status of pigs in time,monitor accurately the disease dynamics of live pigs,and reduce the morbidity and mortality of pigs in the existing large-scale farming model,pig detection and tracking technology based on machine vision are used to monitor the behavior of pigs.However,it is challenging to efficiently detect and track pigs with noise caused by occlusion and interaction between targets.In view of the actual breeding conditions of pigs and the limitations of existing behavior monitoring technology of an individual pig,this study proposed a method that used color feature,target centroid and the minimum circumscribed rectangle length-width ratio as the features to build a multi-target tracking algorithm,which based on joint probability data association and particle filter.Experimental results show the proposed algorithm can quickly and accurately track pigs in the video,and it is able to cope with partial occlusions and recover the tracks after temporary loss.
基金This project was supported by the National Natural Science Foundation of China (60172033) the Excellent Ph.D.PaperAuthor Foundation of China (200036 ,200237) .
文摘Aiming at three-passive-sensor location system, a generalized 3-dimension (3-D) assignment model is constructed based on property information, and a multi-target programming model is proposed based on direction-finding and property fusion information. The multi-target programming model is transformed into a single target programming problem to resolve, and its data association result is compared with the results which are solved by using one kind of information only. Simulation experiments show the effectiveness of the multi-target programming algorithm with higher data association accuracy and less calculation.
基金the Youth Science and Technology Foundection of University of Electronic Science andTechnology of China (JX0622).
文摘In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.
基金Supported by the National Natural Science Foundation of China (No. 60736006 and 60875019)
文摘The multi-sensor multi-target localization and data fusion problem is discussed, and a new data fusion method called joint probability density matrix (JPDM) has been proposed, which can associate with and fuse measurements from spatially distributed heterogeneous sensors to produce good estimates of the targets. Based on probabilistic grids representation, the uncertainty regions of all the measurements are numerically combined in a general framework. The NP-hard multi-sensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion methods, the JPDM method does not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.