期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Multi-scale data joint inversion of minerals and porosity in altered igneous reservoirs—A case study in the South China Sea
1
作者 Xin-Ru Wang Bao-Zhi Pan +2 位作者 Yu-Hang Guo Qing-Hui Wang Yao Guan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期206-220,共15页
There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.Howe... There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.However,affected by the diverse lithology,complicated mineral and widespread alteration,conventional logging lithology classification and mineral inversion become considerably difficult.At the same time,owing to the limitation of the wireline log response equation,the quantity and accuracy of minerals can hardly meet the exploration requirements of igneous formations.To overcome those issues,this study takes the South China Sea as an example,and combines multi-scale data such as micro rock slices,petrophysical experiments,wireline log and element cutting log to establish a set of joint inversion methods for minerals and porosity of altered igneous rocks.Specifically,we define the lithology and mineral characteristics through core slices and mineral data,and establish an igneous multi-mineral volumetric model.Then we determine element cutting log correction method based on core element data,and combine wireline log and corrected element cutting log to perform the lithology classification and joint inversion of minerals and porosity.However,it is always difficult to determine the elemental eigenvalues of different minerals in inversion.This paper uses multiple linear regression methods to solve this problem.Finally,an integrated inversion technique for altered igneous formations was developed.The results show that the corrected element cutting log are in good agreement with the core element data,and the mineral and porosity results obtained from the joint inversion based on the wireline log and corrected element cutting log are also in good agreement with the core data from X-ray diffraction.The results demonstrate that the inversion technique is applicable and this study provides a new direction for the mineral inversion research of altered igneous formations. 展开更多
关键词 joint inversion Altered igneous rock Element correction method Lithology identification Multi mineral volume model
下载PDF
An empirical method for joint inversion of wave and wind parameters based on SAR and wave spectrometer data
2
作者 Yong Wan Xiaona Zhang +2 位作者 Shuyan Lang Ennan Ma Yongshou Dai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期133-144,共12页
Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea... Synthetic aperture radar(SAR)and wave spectrometers,crucial in microwave remote sensing,play an essential role in monitoring sea surface wind and wave conditions.However,they face inherent limitations in observing sea surface phenomena.SAR systems,for instance,are hindered by an azimuth cut-off phenomenon in sea surface wind field observation.Wave spectrometers,while unaffected by the azimuth cutoff phenomenon,struggle with low azimuth resolution,impacting the capture of detailed wave and wind field data.This study utilizes SAR and surface wave investigation and monitoring(SWIM)data to initially extract key feature parameters,which are then prioritized using the extreme gradient boosting(XGBoost)algorithm.The research further addresses feature collinearity through a combined analysis of feature importance and correlation,leading to the development of an inversion model for wave and wind parameters based on XGBoost.A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height,mean wave period,wind direction,and wind speed reveals root mean square errors of 0.212 m,0.525 s,27.446°,and 1.092 m/s,compared to 0.314 m,0.888 s,27.698°,and 1.315 m/s from buoy data,respectively.These results demonstrate the model’s effective retrieval of wave and wind parameters.Finally,the model,incorporating altimeter and scatterometer data,is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds.This comparison highlights the model’s superior inversion accuracy over other methods. 展开更多
关键词 synthetic aperture radar(SAR) wave spectrometer extreme gradient boosting(XGBoost) joint inversion method wave and wind parameters
下载PDF
Crustal and uppermost mantle structure of the northeastern Qinghai-Xizang Plateau from joint inversion of surface wave dispersions and receiver functions with P velocity constraints
3
作者 Pei Zhang Xiaodong Song +2 位作者 Jiangtao Li Xingchen Wang Xuezhen Zhang 《Earthquake Science》 2024年第2期93-106,共14页
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j... Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region. 展开更多
关键词 joint inversion receiver functions surface waves crustal thickness vP/vS ratio NE Qinghai-Xizang Plateau
下载PDF
Fast 3D joint inversion of gravity and magnetic data based on cross gradient constraint
4
作者 Sheng Liu Xiangyun Wan +6 位作者 Shuanggen Jin Bin Jia Songbai Xuan Quan Lou Binbin Qin Rongfu Peng Dali Sun 《Geodesy and Geodynamics》 EI CSCD 2023年第4期331-346,共16页
The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed ph... The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed physical property models,the triple strategy is adopted in this paper to develop a fast cross-gradient joint inversion for gravity and magnetic data.The cross-gradient constraint contains solving the gradients of the physical property models and performing the cross-product calculation of their gradients.The sparse matrices are first obtained by calculating the gradients of the physical property models derived from the first-order finite difference.Then,the triple method is applied to optimize the storages and the calculations related to the gradients of the physical property models.Therefore,the storage compression amount of the calculations related to the gradients of the physical property models and the cross-gradient constraint are reduced to one-fold of the number of grid cells at least,and the compression ratio increases with the increase of the number of grid cells.The test results from the synthetic data and field data prove that the structural coupling is achieved by using the fast cross-gradient joint inversion method to effectively reduce the multiplicity of solutions and improve the computing efficiency. 展开更多
关键词 Gravity and magnetic data joint inversion TRIPLE Cross-gradient constraint
下载PDF
Joint inversion of Rayleigh group and phase velocities for S-wave velocity structure of the 2021 M_(S)6.0 Luxian earthquake source area,China
5
作者 Wei Xu Pingping Wu +4 位作者 Dahu Li Huili Guo Qiyan Yang Laiyu Lu Zhifeng Ding 《Earthquake Science》 2023年第5期356-375,共20页
On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dim... On September 16,2021,a MS6.0 earthquake struck Luxian County,one of the shale gas blocks in the Southeastern Sichuan Basin,China.To understand the seismogenic environment and its mechanism,we inverted a fine three-dimensional S-wave velocity model from ambient noise tomography using data from a newly deployed dense seismic array around the epicenter,by extracting and jointly inverting the Rayleigh phase and group velocities in the period of 1.6–7.2 s.The results showed that the velocity model varied significantly beneath different geological units.The Yujiasi syncline is characterized by low velocity at depths of~3.0–4.0 km,corresponding to the stable sedimentary layer in the Sichuan Basin.The eastern and western branches of the Huayingshan fault belt generally exhibit high velocities in the NE-SW direction,with a few local low-velocity zones.The Luxian MS6.0 earthquake epicenter is located at the boundary between the high-and low-velocity zones,and the earthquake sequences expand eastward from the epicenter at depths of 3.0–5.0 km.Integrated with the velocity variations around the epicenter,distribution of aftershock sequences,and focal mechanism solution,it is speculated that the seismogenic mechanism of the main shock might be interpreted as the reactivation of pre-existing faults by hydraulic fracturing. 展开更多
关键词 Luxian earthquake ambient noise tomography S-wave velocity model SEISMICITY seismogenic mechanism joint inversion
下载PDF
Joint inversion of gravity and vertical gradient data based on modified structural similarity index for the structural and petrophysical consistency constraint
6
作者 Sheng Liu Xiangyun Wan +6 位作者 Shuanggen Jin Bin Jia Quan Lou Songbai Xuan Binbin Qin Yiju Tang Dali Sun 《Geodesy and Geodynamics》 EI CSCD 2023年第5期485-499,共15页
Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysica... Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysical consistency constraint methods,which are mutually independent.Currently,there is a need for joint inversion methods that can comprehensively consider the structural consistency constraints and petrophysical consistency constraints.This paper develops the structural similarity index(SSIM)as a new structural and petrophysical consistency constraint for the joint inversion of gravity and vertical gradient data.The SSIM constraint is in the form of a fraction,which may have analytical singularities.Therefore,converting the fractional form to the subtractive form can solve the problem of analytic singularity and finally form a modified structural consistency index of the joint inversion,which enhances the stability of the SSIM constraint applied to the joint inversion.Compared to the reconstructed results from the cross-gradient inversion,the proposed method presents good performance and stability.The SSIM algorithm is a new joint inversion method for petrophysical and structural constraints.It can promote the consistency of the recovered models from the distribution and the structure of the physical property values.Then,applications to synthetic data illustrate that the algorithm proposed in this paper can well process the synthetic data and acquire good reconstructed results. 展开更多
关键词 joint inversion Gravity and vertical gradient data Modified structural similarity index
下载PDF
Curupira V1.0: Joint Inversion of VES and TEM for Environmental and Mass Movements Studies
7
作者 Cassiano Antonio Bortolozo Jorge Luís Porsani +9 位作者 Tristan Pryer Jorge Luis Abril Benjumea Fernando Acácio Monteiro dos Santos Marco Antonio Couto Jr. Luana Albertani Pampuch Tatiana Sussel Gonçalves Mendes Daniel Metodiev Marcio Augusto Ernesto de Moraes Rodolfo Moreda Mendes Marcio Roberto Magalhães de Andrade 《International Journal of Geosciences》 2023年第11期1160-1176,共17页
An innovative inversion code, named “Curupira v1.0”, has been developed using Matlab to determine the vertical distribution of resistivity beneath the subsoil. The program integrates Vertical Electrical Sounding (VE... An innovative inversion code, named “Curupira v1.0”, has been developed using Matlab to determine the vertical distribution of resistivity beneath the subsoil. The program integrates Vertical Electrical Sounding (VES), successful in shallow subsurface exploration and Time Domain Electromagnetic (TEM) techniques, better suited for deeper exploration, both of which are widely employed in geophysical exploration. These methodologies involve calculating subsurface resistivity through appropriate inversion processes. To address the ill-posed nature of inverse problems in geophysics, a joint inversion scheme combining VES and TEM data has been incorporated into Curupira v1.0. The software has been tested on both synthetic and real-world data, the latter of which was acquired from the Parana sedimentary basin which we summarise here. The results indicate that the joint inversion of VES and TEM techniques offers improved recovery of simulated models and demonstrates significant potential for hydrogeological studies. 展开更多
关键词 VES TEM joint inversion CRS—Controlled Random Search Paraná Sedimentary Basin Brazil
下载PDF
Joint inversion of gravity and magnetic data for a two-layer model 被引量:1
8
作者 江凡 吴健生 王家林 《Applied Geophysics》 SCIE CSCD 2008年第4期331-339,共9页
Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose... Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method. 展开更多
关键词 Two-layer model joint inversion of gravity and magnetic data Cenozoic andcrystalline basement
下载PDF
AVO approximation for PS-wave and its application in PP/PS joint inversion
9
作者 王璞 胡天跃 《Applied Geophysics》 SCIE CSCD 2011年第3期189-196,240,共9页
Multi-component exploration has many advantages over ordinary P-wave exploration. PP/PS joint AVO analysis and inversion are useful and powerful methods to discriminate between reservoir and non-productive lithology. ... Multi-component exploration has many advantages over ordinary P-wave exploration. PP/PS joint AVO analysis and inversion are useful and powerful methods to discriminate between reservoir and non-productive lithology. In this paper, we derive a new PS-wave reflection coefficient approximation equation which is more accurate at larger incidence angles. The equation is simplified for small incidence angles, which makes AVO analysis clearer and easier for angles less than 30 degrees. Based on this approximation, a PP/PS joint inversion is introduced. A real data example shows that oil sands, brine sands and shales can be differentiated based on the P- to S-wave velocity ratio from the PP/PS joint inversion. Fluid factors and Poisson's ratio also indicate an anomaly in the target zone at the oil well location. 展开更多
关键词 PS wave AVO reflection coefficient joint inversion MULTI-COMPONENT
下载PDF
Stepwise joint inversion of surface wave dispersion,Rayleigh wave ZH ratio,and receiver function data for 1D crustal shear wave velocity structure 被引量:9
10
作者 Ping Zhang Huajian Yao 《Earthquake Science》 CSCD 2017年第5期229-238,共10页
Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave ... Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave dispersion, Rayleigh wave ZH ratio (i.e., ellipticity), and receiver function data to better resolve 1D crustal shear wave velocity (Vs) structure. Surface wave dispersion and Rayleigh wave ZH ratio data are more sensitive to absolute variations of shear wave speed at depths, but their sensi- tivity kernels to shear wave speeds are different and complimentary. However, receiver function data are more sensitive to sharp velocity contrast (e.g., due to the existence of crustal interfaces) and Vp/Vs ratios. The stepwise inversion method takes advantages of the complementary sensitivities of each dataset to better constrain the Vs model in the crust. We firstly invert surface wave dispersion and ZH ratio data to obtain a 1D smooth absolute vs model and then incorporate receiver function data in the joint inver- sion to obtain a finer Vs model with better constraints on interface structures. Through synthetic tests, Monte Carlo error analyses, and application to real data, we demonstrate that the proposed joint inversion method can resolve robust crustal Vs structures and with little initial model dependency. 展开更多
关键词 joint inversion Receiver function Surfacewave dispersion Rayleigh wave ZH ratio· Shearwave velocity
下载PDF
2D joint inversion of CSAMT and magnetic data based on cross-gradient theory 被引量:5
11
作者 Wang Kun-Peng Tan Han-Dong Wang Tao 《Applied Geophysics》 SCIE CSCD 2017年第2期279-290,324,共13页
A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with ... A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm. 展开更多
关键词 CSAMT magnetic method data space inversion cross-gradient joint inversion
下载PDF
Rupture process of the 2011 Tohoku earthquake from the joint inversion of teleseismic and GPS data 被引量:6
12
作者 Yong Zhang Lisheng Xu Yun-tai Chen 《Earthquake Science》 CSCD 2012年第2期129-135,共7页
Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s... Teleseismic and GPS data were jointly inverted for the rupture process of the 2011 Tohoku earthquake. The inversion results show that it is a bilateral rupture event with an average rupture velocity less than 2.0 km/s along the fault strike direction. The source rupture process consists of three sub-events, the first oc- curred near the hypocenter and the rest two ruptured along the up-dip direction and broke the sea bed, causing a maximum slip of about 30 m. The large-scale sea bed breakage may account for the tremendous tsunami disaster which resulted in most of the death and missing in this mega earthquake. 展开更多
关键词 2011 Tohoku earthquake rupture process joint inversion teleseismic data GPS data
下载PDF
Source model of the 11th July 2004 Zhongba earthquake revealed from the joint inversion of InSAR and seismological data 被引量:3
13
作者 Shengji Wei Sidao Ni +1 位作者 Xianjie Zha Don Helmberger 《Earthquake Science》 CSCD 2011年第2期207-220,共14页
We use interferometric synthetic aperture radar (InSAR) and broadband seismic waveform data to estimate a source model of the 11th July, 2004 M W 6.2 Zhongba earthquake, Tibet of China. This event occurred within th... We use interferometric synthetic aperture radar (InSAR) and broadband seismic waveform data to estimate a source model of the 11th July, 2004 M W 6.2 Zhongba earthquake, Tibet of China. This event occurred within the seismically active zone of southwestern Tibetan Plateau where the east-west extension of the upper crust is observed. Because of limitations in one pair of InSAR data available, there are trade-offs among centroid depth, rupture area and amount of slip. Available seismic data tightly constrain the focal mechanism and centroid depth of the earthquake but not the horizontal location. Together, two complementary data sets can be used to identify the actual fault plane, better constrain the slip model and event location. We first use regional seismic waveform to estimate point source mechanism, then InSAR data is used to obtain better location. Finally, a joint inversion of teleseismic P-waves and InSAR data is performed to obtain a distributed model. Our preferred point source mechanism indicates a seismic moment of ~2.2×10 18 N·m (~M W 6.2), a fault plane solution of 171° (342 ° )/42 ° (48 ° )/-83 ° (-97 ° ), corresponding to strike/dip/rake, and a depth of 11 km. The fault plane with strike of 171 ? and dip of 42° is identified as the ruptured fault with the aid of InSAR data. The preferred source model features compact area of slips between depth of 5–11 km and 10 km along strike with maximum slip amplitude of about 1.5 m. 展开更多
关键词 finite fault INSAR joint inversion Zhongba earthquake
下载PDF
Effective elastic thickness of the lithosphere from joint inversion in western China and its implications 被引量:2
14
作者 Wen Shi Shi Chen Jiancheng Han 《Earthquake Science》 2020年第1期1-10,共10页
The western China lies in the convergence zone between Eurasian and Indian plates.It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth.The lithospheric strength is a ... The western China lies in the convergence zone between Eurasian and Indian plates.It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth.The lithospheric strength is a key factor in controlling the lithosphere dynamics and deformations.The effective elastic thickness(T_(e))of the lithosphere can be used to address the lithospheric strength.Previous researchers only used one of the admittance or coherence methods to investigate the T_(e) in the western China.Moreover,most of them ignored the internal loads of the lithosphere during the T_(e) calculation,which can produce large biases in the T_(e) estimations.To provide more reliable T_(e) estimations,we used a new joint inversion method that integrated both admittance and coherence techniques to compute the T_(e) in this study,with the WGM2012 gravity data,the ETOPO1 topographic data,and the Moho depths from the CRUST1.0 model.The internal loads are considered and investigated using the load ratio(F).Our results show that the joint inversion method can yield reliable T_(e) and F values.Based on the analysis of T_(e) and F distributions,we suggest(1)the northern Tibetan Plateau could be the front edge of the plate collision of Eurasian and Indian plates;(2)the southern and part of central Tibetan Plateau have a strong lithospheric mantle related to the rigid underthrusting Indian plate;(3)the southeastern Tibetan Plateau may be experiencing the delamination of lithosphere and upwelling of asthenosphere. 展开更多
关键词 effective elastic thickness joint inversion western China gravity anomaly lithospheric strength
下载PDF
Coseismic deformation of the 2021 M_(W)7.4 Maduo earthquake from joint inversion of InSAR, GPS, and teleseismic data 被引量:2
15
作者 Chaoya Liu Ling Bai +5 位作者 Shunying Hong Yanfang Dong Yong Jiang Hongru Li Huili Zhan Zhiwen Chen 《Earthquake Science》 2021年第5期436-446,共11页
The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_... The M_(W)7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture.This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau,where eight earthquakes of M_(S)>7.0 have occurred in the past 25 years.Here,we combined interferometric synthetic aperture radar,GPS,and teleseismic data to study the coseismic slip distribution,fault geometry,and dynamic source rupture process of the Maduo earthquake.We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°.There was slight bending at the western end and two branches at the eastern end.The maximum slip is located near the eastern bending area on the northern branch of the fault system.The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions.The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 M_(W)6.8 Yushu earthquake,indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block. 展开更多
关键词 Maduo earthquake joint inversion coseismic de-formation fault geometry rupture process.
下载PDF
Joint inversion of gravity and seismic data along a profile across the seismogenic fault of 2010 Yushu Ms7. 1 earthquake 被引量:2
16
作者 Yang Guangliang Wang Fuyun +2 位作者 Shen Chongyang Sun Shaoan Tan Hongbo 《Geodesy and Geodynamics》 2011年第4期21-27,共7页
Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-refl... Yushu Ms7.1 earthquake occurred on the Ganzi-Yushu fault zone, across which we carried out a joint relative-gravity and seismic-reflection survey, and then performed a gravity inversion constrained by the seismic-reflection result. Based on the data of complete Bouguer gravity anomaly and seismic reflection, we obtained a layered interface structure in deep crust down to Moho. Our study showed that the inversion could reveal the interfaces of strata along the survey profile and the directions of regional faults in two-dimension. From the characteristics of the observed topography of the Moho basement, we tentatively confirmed that the uplift of eastern edge of Qinghai-Tibet plateau was caused by the subduetion of the Indian plate. 展开更多
关键词 Ganzi-Yushu fault zone Bouguer gravity anomaly reflection seismic joint inversion
下载PDF
3D v_P and v_S models of southeastern margin of the Tibetan plateau from joint inversion of body-wave arrival times and surface-wave dispersion data 被引量:2
17
作者 Lina Gao Haijiang Zhang +1 位作者 Huajian Yao Hui Huang 《Earthquake Science》 CSCD 2017年第1期17-32,共16页
A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and sur- face-wave data. For the body-wave data, we used 7190 eve... A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and sur- face-wave data. For the body-wave data, we used 7190 events recorded by 102 stations in the SE margin of the Tibetan plateau. The surface-wave data consist of Rayleigh wave phase velocity dispersion curves obtained from ambient noise cross-correlation analysis recorded by a dense array in the SE margin of the Tibetan plateau. The joint inversion clearly improves the Vs model because it is constrained by both data types. The results show that at around 10 km depth there are two low-velocity anomalies embedded within three high-velocity bodies along the Longmenshan fault system. These high-velocity bodies correspond well with the Precambrian massifs, and the two located to the northeast of 2013 Ms 7.0 Lushan earthquake are associated with high fault slip areas during the 2008 Wenchuan earthquake. The aftershock gap between 2013 Lushan earthquake and 2008 Wenchuan earthquake is associated with low-velocity anomalies, which also acts as a barrier zone for ruptures of two earthquakes. Generally large earthquakes (M 〉 5) in the region occurring from 2008 to 2015 are located around the high-velocity zones, indicating that they may act as asperities for these large earthquakes. Joint inversion results also clearly show that there exist low-velocity or weak zones in the mid-lower crust, which are not evenly distributed beneath the SE margin of Tibetan plateau. 展开更多
关键词 joint inversion - Body waves Surface waves Aftershock gap The southeastern margin of Tibetan plateau
下载PDF
3D joint inversion of surface and borehole gravity data using zeroth-order minimum entropy regularization 被引量:1
18
作者 Peng Guo-Min Sun Zhong-Yu Liu Zhan 《Applied Geophysics》 SCIE CSCD 2021年第2期131-144,272,共15页
Surface and borehole gravity data contain complementary information.Thus,the joint inversion of these two data types can help retrieve the real spatial distributions of density bodies.When a sharp boundary exists betw... Surface and borehole gravity data contain complementary information.Thus,the joint inversion of these two data types can help retrieve the real spatial distributions of density bodies.When a sharp boundary exists between an anomalous density body and its surrounding rock,the interface recovered by smooth inversion with Tikhonov regularization is not clear,leading to difficulties in the subsequent geological interpretation.In this work,we develop a joint inversion of surface and borehole gravity data using zeroth-order minimum entropy regularization.The method takes advantage of the complementary information from surface and borehole gravity data to enhance the imaging resolution of density bodies.It also produces a focused imaging of bodies through the zeroth-order minimum entropy regularization without requiring a preselection of a proper focusing parameter.We apply the developed joint inversion approach to three diff erent synthetic data sets.Inversion results show that the focusing inversion with the zeroth-order minimum entropy regularization provides a good description of the true spatial extent of anomalous density bodies.Meanwhile,the joint focusing inversion reconstructs a more reliable density model with a relatively high resolution when a density body is passed through by one or more boreholes. 展开更多
关键词 gravity anomaly surface gravity borehole gravity joint inversion zeroth-order minimum entropy regularization
下载PDF
Joint inversion method of formation shear-wave anisotropy from logging-while-drilling acoustic data 被引量:1
19
作者 Li Jia-Cheng He Xiao Jiang Can 《Applied Geophysics》 SCIE CSCD 2022年第4期503-512,603,共11页
Most sedimentary formations with fine layers can be characterized as transversely isotropic media.The evaluation of shear-wave anisotropy is critical in logging-while-drilling(LWD)applications.We developed a joint met... Most sedimentary formations with fine layers can be characterized as transversely isotropic media.The evaluation of shear-wave anisotropy is critical in logging-while-drilling(LWD)applications.We developed a joint method to simultaneously invert formation shear-wave anisotropy and vertical shear velocity using LWD monopole and dipole dispersion data.Theoretical analysis demonstrates that formation shear-wave anisotropy significantly aff ects the dispersion characteristics of Stoneley and formation flexural waves.The inversion objective function was constructed based on the change in dispersion characteristics and was weighted by the spectra of multipole waves.Numerical results using synthetic examples demonstrate that the joint inversion method can not only alleviate the non-uniqueness problem but also help improve the accuracy of the inversion results.The comparison of diff erent signal-to-noise ratio inversion results proved that the weighted inversion method is more accurate and stable. 展开更多
关键词 acoustic logging-while-drilling ANISOTROPY joint inversion DISPERSION
下载PDF
3D joint inversion of controlled-source audio-frequency magnetotelluric and magnetotelluric data 被引量:1
20
作者 RONG Zhihao LIU Yunhe 《Global Geology》 2022年第1期26-33,共8页
Different geophysical exploration methods have significant differences in terms of exploration depth,especially in frequency domain electromagnetic(EM)exploration.According to the definition of skin depth,this differe... Different geophysical exploration methods have significant differences in terms of exploration depth,especially in frequency domain electromagnetic(EM)exploration.According to the definition of skin depth,this difference will increase with the effective detection frequency of the method.As a result,when performing three-dimensional inversion on single type of EM data,it is not possible to effectively distinguish the subsurface geoelectric structure at the full scale.Therefore,it is necessary to perform joint inversion on different type of EM data.In this paper we combine the magnetotelluric method(MT)with the controlled-source audio-magnetotelluric method(CSAMT)to study the frequency-domain three-dimensional(3D)joint inversions,and we use the unstructured finite-element method to do the forward modeling for them,so that the numerical simulation accuracies of different electromagnetic methods can be satisfied.By combining the two sets of data,we can obtain the sensitivity of the electrical structure at different depths,and depict the full-scale subsurface geoelectric structures.In actual mineral exploration,the 3D joint inversion is more useful for identifying subsurface veins in the shallow part and blind mines in the deep part.It can delineate the morphological distribution of ore bodies more completely and provide reliable EM interpretations to guide the mining of minerals. 展开更多
关键词 3D joint inversion controlled-source audio-frequency magnetotelluric method magnetotelluric method onshore mineral resource exploration
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部