Surface and borehole gravity data contain complementary information.Thus,the joint inversion of these two data types can help retrieve the real spatial distributions of density bodies.When a sharp boundary exists betw...Surface and borehole gravity data contain complementary information.Thus,the joint inversion of these two data types can help retrieve the real spatial distributions of density bodies.When a sharp boundary exists between an anomalous density body and its surrounding rock,the interface recovered by smooth inversion with Tikhonov regularization is not clear,leading to difficulties in the subsequent geological interpretation.In this work,we develop a joint inversion of surface and borehole gravity data using zeroth-order minimum entropy regularization.The method takes advantage of the complementary information from surface and borehole gravity data to enhance the imaging resolution of density bodies.It also produces a focused imaging of bodies through the zeroth-order minimum entropy regularization without requiring a preselection of a proper focusing parameter.We apply the developed joint inversion approach to three diff erent synthetic data sets.Inversion results show that the focusing inversion with the zeroth-order minimum entropy regularization provides a good description of the true spatial extent of anomalous density bodies.Meanwhile,the joint focusing inversion reconstructs a more reliable density model with a relatively high resolution when a density body is passed through by one or more boreholes.展开更多
Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose...Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.展开更多
A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with ...A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.展开更多
Joint inversion based on a correlation constraint utilizes a linear correlation function as a structural constraint.The linear correlation function contains a denominator,which may result in a singularity as the objec...Joint inversion based on a correlation constraint utilizes a linear correlation function as a structural constraint.The linear correlation function contains a denominator,which may result in a singularity as the objective function is optimized,leading to an unstable inversion calculation.To improve the robustness of this calculation,this paper proposes a new method in which a sinusoidal correlation function is employed as the structural constraint for joint inversion instead of the conventional linear correlation function.This structural constraint does not contain a denominator,thereby preventing a singularity.Compared with the joint inversion method based on a cross-gradient constraint,the joint inversion method based on a sinusoidal correlation constraint exhibits good performance.An application to actual data demonstrates that this method can process real data.展开更多
The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed ph...The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed physical property models,the triple strategy is adopted in this paper to develop a fast cross-gradient joint inversion for gravity and magnetic data.The cross-gradient constraint contains solving the gradients of the physical property models and performing the cross-product calculation of their gradients.The sparse matrices are first obtained by calculating the gradients of the physical property models derived from the first-order finite difference.Then,the triple method is applied to optimize the storages and the calculations related to the gradients of the physical property models.Therefore,the storage compression amount of the calculations related to the gradients of the physical property models and the cross-gradient constraint are reduced to one-fold of the number of grid cells at least,and the compression ratio increases with the increase of the number of grid cells.The test results from the synthetic data and field data prove that the structural coupling is achieved by using the fast cross-gradient joint inversion method to effectively reduce the multiplicity of solutions and improve the computing efficiency.展开更多
The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for?developing improved physical property models with high resolution and compatible features;?however, the conventional pro...The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for?developing improved physical property models with high resolution and compatible features;?however, the conventional procedure is inefficient due to the truncated singular values decomposition?(SVD) process at each iteration. To improve the algorithm, a technique using damped leastsquares?is adopted to calculate the structural term of model updates, instead of the truncated SVD. This?produces structural coupled density and magnetization images with high efficiency. A so-called?coupling factor is introduced to regulate the tuning of the desired final structural similarity level.?Synthetic examples show that the joint inversion results are internally consistent and achieve?higher?resolution than separated. The acceptable runtime performance of the damped least squares?technique used in joint inversion indicates that it is more suitable for practical use than the truncated SVD method.展开更多
The cross-gradients joint inversion technique has been applied to multiple geophysical data with a significant improvement on compatibility, but its numerical implementation for practical use is rarely discussed in th...The cross-gradients joint inversion technique has been applied to multiple geophysical data with a significant improvement on compatibility, but its numerical implementation for practical use is rarely discussed in the literature. We present a MATLAB-based three-dimensional cross-gradients joint inversion program with application to gravity and magnetic data. The input and output information was examined with care to create a rational, independent design of a graphical user interface (GUI) and computing kernel. For 3D visualization and data file operations, UBC-GIF tools are invoked using a series of I/O functions. Some key issues regarding the iterative joint inversion algorithm are also discussed: for instance, the forward difference of cross gradients, and matrix pseudo inverse computation. A synthetic example is employed to illustrate the whole process. Joint and separate inversions can be performed flexibly by switching the inversion mode. The resulting density model and susceptibility model demonstrate the correctness of the proposed program.展开更多
2006年The Leading Edge第一期详细介绍了磁力梯度张量的理论、仪器与野外试验结果,磁力梯度张量技术已成为磁力勘探新的热点之一。笔者介绍了磁力梯度张量的概念及优点;利用频率域与空间域方法把井中三分量磁测资料换算磁力梯度张量;...2006年The Leading Edge第一期详细介绍了磁力梯度张量的理论、仪器与野外试验结果,磁力梯度张量技术已成为磁力勘探新的热点之一。笔者介绍了磁力梯度张量的概念及优点;利用频率域与空间域方法把井中三分量磁测资料换算磁力梯度张量;根据联合反演原理与欧拉反褶积方法,推导了磁力梯度张量的联合反演方程,该方程通过权函数矩阵可以灵活对一个或多个分量反演,比文献[14]方法更具普遍性。理论模型结果表明,磁力梯度张量反演方法对井底异常的定位准确,对于3D模型,一口钻井的资料也能较好确定空间位置。将该方法用于湖北大冶铁矿18-2井三分量磁测资料的解释,得出磁力梯度张量的欧拉解集中在100~180 m与500~550 m两个深度,与钻探结果十分吻合。该结果证实了地质上关于铁矿体分布具两个台阶的推论,对大冶铁矿的深部找矿具有实际意义。展开更多
基金financially supported by the National Key Research and Development Program of China(no.2018YFC0603300)the National Natural Science Foundation of China(no.42004054)。
文摘Surface and borehole gravity data contain complementary information.Thus,the joint inversion of these two data types can help retrieve the real spatial distributions of density bodies.When a sharp boundary exists between an anomalous density body and its surrounding rock,the interface recovered by smooth inversion with Tikhonov regularization is not clear,leading to difficulties in the subsequent geological interpretation.In this work,we develop a joint inversion of surface and borehole gravity data using zeroth-order minimum entropy regularization.The method takes advantage of the complementary information from surface and borehole gravity data to enhance the imaging resolution of density bodies.It also produces a focused imaging of bodies through the zeroth-order minimum entropy regularization without requiring a preselection of a proper focusing parameter.We apply the developed joint inversion approach to three diff erent synthetic data sets.Inversion results show that the focusing inversion with the zeroth-order minimum entropy regularization provides a good description of the true spatial extent of anomalous density bodies.Meanwhile,the joint focusing inversion reconstructs a more reliable density model with a relatively high resolution when a density body is passed through by one or more boreholes.
基金Supported by the National Natural Science Foundation of China(Grant No.40674063)National Hi-tech Research and Development Program of China(863Program)(Grant No.2006AA09Z311)
文摘Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion methodfor two-layer models by concentrating on the relationship between the change of thicknessI and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.
基金jointly sponsored by the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China(No.41374078)
文摘A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.
基金supported by the National Key Research and Development Project of China(No:2017YFC0602201)
文摘Joint inversion based on a correlation constraint utilizes a linear correlation function as a structural constraint.The linear correlation function contains a denominator,which may result in a singularity as the objective function is optimized,leading to an unstable inversion calculation.To improve the robustness of this calculation,this paper proposes a new method in which a sinusoidal correlation function is employed as the structural constraint for joint inversion instead of the conventional linear correlation function.This structural constraint does not contain a denominator,thereby preventing a singularity.Compared with the joint inversion method based on a cross-gradient constraint,the joint inversion method based on a sinusoidal correlation constraint exhibits good performance.An application to actual data demonstrates that this method can process real data.
基金supported by the National Key Research and Development Program(Grant No.2021YFA0716100)the National Key Research and Development Program of China Project(Grant No.2018YFC0603502)Henan Youth Science Fund Program(Grant No.212300410105).
文摘The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed physical property models,the triple strategy is adopted in this paper to develop a fast cross-gradient joint inversion for gravity and magnetic data.The cross-gradient constraint contains solving the gradients of the physical property models and performing the cross-product calculation of their gradients.The sparse matrices are first obtained by calculating the gradients of the physical property models derived from the first-order finite difference.Then,the triple method is applied to optimize the storages and the calculations related to the gradients of the physical property models.Therefore,the storage compression amount of the calculations related to the gradients of the physical property models and the cross-gradient constraint are reduced to one-fold of the number of grid cells at least,and the compression ratio increases with the increase of the number of grid cells.The test results from the synthetic data and field data prove that the structural coupling is achieved by using the fast cross-gradient joint inversion method to effectively reduce the multiplicity of solutions and improve the computing efficiency.
文摘The structure-coupled joint inversion method of gravity and magnetic data is a powerful tool for?developing improved physical property models with high resolution and compatible features;?however, the conventional procedure is inefficient due to the truncated singular values decomposition?(SVD) process at each iteration. To improve the algorithm, a technique using damped leastsquares?is adopted to calculate the structural term of model updates, instead of the truncated SVD. This?produces structural coupled density and magnetization images with high efficiency. A so-called?coupling factor is introduced to regulate the tuning of the desired final structural similarity level.?Synthetic examples show that the joint inversion results are internally consistent and achieve?higher?resolution than separated. The acceptable runtime performance of the damped least squares?technique used in joint inversion indicates that it is more suitable for practical use than the truncated SVD method.
文摘The cross-gradients joint inversion technique has been applied to multiple geophysical data with a significant improvement on compatibility, but its numerical implementation for practical use is rarely discussed in the literature. We present a MATLAB-based three-dimensional cross-gradients joint inversion program with application to gravity and magnetic data. The input and output information was examined with care to create a rational, independent design of a graphical user interface (GUI) and computing kernel. For 3D visualization and data file operations, UBC-GIF tools are invoked using a series of I/O functions. Some key issues regarding the iterative joint inversion algorithm are also discussed: for instance, the forward difference of cross gradients, and matrix pseudo inverse computation. A synthetic example is employed to illustrate the whole process. Joint and separate inversions can be performed flexibly by switching the inversion mode. The resulting density model and susceptibility model demonstrate the correctness of the proposed program.
文摘2006年The Leading Edge第一期详细介绍了磁力梯度张量的理论、仪器与野外试验结果,磁力梯度张量技术已成为磁力勘探新的热点之一。笔者介绍了磁力梯度张量的概念及优点;利用频率域与空间域方法把井中三分量磁测资料换算磁力梯度张量;根据联合反演原理与欧拉反褶积方法,推导了磁力梯度张量的联合反演方程,该方程通过权函数矩阵可以灵活对一个或多个分量反演,比文献[14]方法更具普遍性。理论模型结果表明,磁力梯度张量反演方法对井底异常的定位准确,对于3D模型,一口钻井的资料也能较好确定空间位置。将该方法用于湖北大冶铁矿18-2井三分量磁测资料的解释,得出磁力梯度张量的欧拉解集中在100~180 m与500~550 m两个深度,与钻探结果十分吻合。该结果证实了地质上关于铁矿体分布具两个台阶的推论,对大冶铁矿的深部找矿具有实际意义。