The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are consider...The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are considered simultaneously. On one hand, the joint loads are calculated and constrained within a limited value to avoid the failure of fasteners. On the other hand, the manufacturing constraints of the material distribution in the machining directions of stiffeners are implemented by an improved piecewise interpolation based on a beveled cut-surface. It is proven that the objective function is strictly continuous and differentiable with respect to the piecewise interpolation. The effects of the extended method with two different constraints are highlighted by typical numerical examples. Compared with the standard topology optimization, the final designs have clearly shown the layout of stiffeners and the joint loads have been perfectly constrained to a satisfying level.展开更多
This paper presents an extended topology optimization approach considering joint load constraints with geo-metrical nonlinearity in design of assembled structures.The geometrical nonlinearity is firstly included to re...This paper presents an extended topology optimization approach considering joint load constraints with geo-metrical nonlinearity in design of assembled structures.The geometrical nonlinearity is firstly included to reflect the structural response and the joint load distribution under large deformation.To avoid a failure of fastener joints,topology optimization is then carried out to minimize the structural end compliance in the equilibrium state while controlling joint loads intensities over fasteners.During nonlinear analysis and optimization,a novel implementation of adjoint vector sensitivity analysis along with super element condensation is introduced to address numerical instability issues.The degrees of freedom of weak regions are condensed so that their influences are excluded from the iterative Newton-Raphson(NR)solution.Numerical examples are presented to validate the efficiency and robustness of the proposed method.The effects of joint load constraints and geometrical nonlinearity are highlighted by comparing numerical optimization results.展开更多
基金supported by National Natural Science Foundation of China (Nos. 11432011, 11620101002)National key research and development program of China (No. 2017YFB1102800)Key Research and Development Program of Shaanxi, China (No. S2017-ZDYF-ZDXM-GY-0035)
文摘The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are considered simultaneously. On one hand, the joint loads are calculated and constrained within a limited value to avoid the failure of fasteners. On the other hand, the manufacturing constraints of the material distribution in the machining directions of stiffeners are implemented by an improved piecewise interpolation based on a beveled cut-surface. It is proven that the objective function is strictly continuous and differentiable with respect to the piecewise interpolation. The effects of the extended method with two different constraints are highlighted by typical numerical examples. Compared with the standard topology optimization, the final designs have clearly shown the layout of stiffeners and the joint loads have been perfectly constrained to a satisfying level.
基金co-supported by National Key Research and Development Program(No.2017YFB1102800)NSFC for Excellent Young Scholars(No.11722219)Key Project of NSFC(Nos.51790171,5171101743,51735005,11620101002,and 11432011).
文摘This paper presents an extended topology optimization approach considering joint load constraints with geo-metrical nonlinearity in design of assembled structures.The geometrical nonlinearity is firstly included to reflect the structural response and the joint load distribution under large deformation.To avoid a failure of fastener joints,topology optimization is then carried out to minimize the structural end compliance in the equilibrium state while controlling joint loads intensities over fasteners.During nonlinear analysis and optimization,a novel implementation of adjoint vector sensitivity analysis along with super element condensation is introduced to address numerical instability issues.The degrees of freedom of weak regions are condensed so that their influences are excluded from the iterative Newton-Raphson(NR)solution.Numerical examples are presented to validate the efficiency and robustness of the proposed method.The effects of joint load constraints and geometrical nonlinearity are highlighted by comparing numerical optimization results.