期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Analysis profile of the fully grouted rock bolt in jointed rock using analytical and numerical methods 被引量:4
1
作者 Ghadimi Mostafa Shahriar Kourosh Jalalifar Hossein 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期609-615,共7页
The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with de... The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone. 展开更多
关键词 Fully grouted bolt Load transfer mechanism jointed rocks Analytical and numerical methods
下载PDF
Effect of Weld Parameters on Effective Notch Stress at Weld Root and Toe of Load Carrying Cruciform Joints 被引量:1
2
作者 Anil Kumar Korupoju Arun Shankar Vilwathilakam Asokendu Samanta 《Journal of Marine Science and Application》 CSCD 2022年第4期67-77,共11页
Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of ... Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of load carrying cruciform joints inships is investigated using Effective Notch Stress (ENS) approach. A fictitious notch of 1 mm radius is introduced at theweld root and toe and fatigue stress is evaluated. The effect of weld leg length (l) and weld penetration depth (p) on ENS atweld root and toe are determined. The critical weld leg length (lcr) at which fatigue failure transitions from weld root toweld toe is investigated. An approximation formula for determination of the critical weld leg length considering weldpenetration depth (p) is proposed. 展开更多
关键词 Crack initiation Critical leg length Cruciform joints Effective notch stress Load carrying joint Root failure T-welded joint Weld penetration Weld root Weld toe
下载PDF
Load Rate of Facet Joints at the Adjacent Segment Increased After Fusion 被引量:3
3
作者 Hui Li Bao-Qing Pei +3 位作者 Jin-Cai Yang Yong Hai De-Yu Li Shu-Qin Wu 《Chinese Medical Journal》 SCIE CAS CSCD 2015年第8期1042-1046,共5页
Background: The cause of the adjacent segment degeneration (ASD) after fusion remains unknown. It is reported that adjacent facet joint stresses increase alter anterior cervical discectomy and fusion. This increase... Background: The cause of the adjacent segment degeneration (ASD) after fusion remains unknown. It is reported that adjacent facet joint stresses increase alter anterior cervical discectomy and fusion. This increase of stress rate may lead to tissue injury. Thus far, the load rate of the adjacent segment facet joint after fusion remains unclear. Methods: Six C2-C7 cadaveric spine specimens were loaded under tour motion modes: Flexion, extension, rotation, and lateral bending, with a pure moment using a 6° robot arm combined with an optical motion analysis system. The Tecscan pressure test system was used for testing facet joint pressure. Results: The contact mode of the facet joints and distributions of the force center during different motions were recorded. The adjacent segment facet joint forces increased faster after fusion, compared with intact conditions. While the magnitude of pressures increased, there was no difference in distribution modes before and after fusion. No pressures were detected during flexion. The average growth velocity during extension was the fastest and was significantly faster than lateral bending. Conclusions: One of the reasons for cartilage injury was the increasing stress rate of loading. This implies that ASD after fusion may be related to habitual movement before and after fusion. More and faster extension is disadvantageous for the facet joints and should be reduced as much as possible. 展开更多
关键词 Action Related Adjacent Segment Degeneration Facet joints Load FUSION Load Rate
原文传递
Stiffeners layout design of thin-walled structures with constraints on multi-fastener joint loads 被引量:6
4
作者 Jie HOU Jihong ZHU +2 位作者 Fei HE Weihong ZHANG Wenjie GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1441-1450,共10页
The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are consider... The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are considered simultaneously. On one hand, the joint loads are calculated and constrained within a limited value to avoid the failure of fasteners. On the other hand, the manufacturing constraints of the material distribution in the machining directions of stiffeners are implemented by an improved piecewise interpolation based on a beveled cut-surface. It is proven that the objective function is strictly continuous and differentiable with respect to the piecewise interpolation. The effects of the extended method with two different constraints are highlighted by typical numerical examples. Compared with the standard topology optimization, the final designs have clearly shown the layout of stiffeners and the joint loads have been perfectly constrained to a satisfying level. 展开更多
关键词 joint load constraint Manufacturing constraint Stiffeners Thin-walled structures Topology optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部