For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness,...For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.展开更多
A method of assigning binary indexes to codevectors in vector quantization (VQ)system, which is called pseudo-Gray coding, is presented in this paper by constructing a kind of Hopfield neural network. Pseudo-Gray codi...A method of assigning binary indexes to codevectors in vector quantization (VQ)system, which is called pseudo-Gray coding, is presented in this paper by constructing a kind of Hopfield neural network. Pseudo-Gray coding belongs to joint source/channel coding, which could provide a redundancy-free error protection scheme for VQ of analog signals when the binary indexes of signal codevectors are used as channel symbols on a discrete memoryless channel. Since pseudo-Gray coding is of combinatorial optimization problems which are NP-complete problems,globally optimal solutions are generally impossible. Thus, a kind of Hopfield neural network is used by constructing suitable energy function to get sub-optimal solutions. This kind of Hop field neural network is easily modified to solve simplified version of pseudo-Gray coding for single bit-error channel model. Simulating experimental results show that the method introduced here could offer good performances.展开更多
基金supported by Guangdong Provincial Technology Planning of China (Grant No. 2007B010400052)State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of China (Grant No. 30715006)Guangdong Provincial Key Laboratory of Automotive Engineering, China (Grant No. 2007A03012)
文摘For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.
文摘A method of assigning binary indexes to codevectors in vector quantization (VQ)system, which is called pseudo-Gray coding, is presented in this paper by constructing a kind of Hopfield neural network. Pseudo-Gray coding belongs to joint source/channel coding, which could provide a redundancy-free error protection scheme for VQ of analog signals when the binary indexes of signal codevectors are used as channel symbols on a discrete memoryless channel. Since pseudo-Gray coding is of combinatorial optimization problems which are NP-complete problems,globally optimal solutions are generally impossible. Thus, a kind of Hopfield neural network is used by constructing suitable energy function to get sub-optimal solutions. This kind of Hop field neural network is easily modified to solve simplified version of pseudo-Gray coding for single bit-error channel model. Simulating experimental results show that the method introduced here could offer good performances.