Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a maj...Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a major disadvantage as compared to environmental impact, that is, wildlife habitat disruption. In as much as it has become optimal for investment in hydropower dam construction, the scourge for dam failure is still eminent, which is as a result of excessive seepage compromising the integrity of the mechanical properties of the dam. The aim of the paper is to highlight successful application methods in joint bonding to avoid excessive seepage and reduce the autogenous healing to a few years of operation. In view of optimization, this paper presents a comprehensive study on the influences of interlayer joints bonding quality from RCC mix performances and how it consolidates the RCC layers to withstand the shear strength along the interface, especially on the high dams. The case study is the RCC dam at the 750 MW Kafue Gorge Lower Hydropower Station. The scope of the study reviews the joint type judged by Modified Maturity Factor (MMF) with joint surface long time exposed in regions with dry and high temperature, technical measures of layer bonding quality control under condition of long time joint surface exposure, effects of joints shear strength and impermeability of the RCC layers when under the conditions of plastic and elasticity. The subtle observations made during the dam construction phases were with respect to the optimal use of materials in relation to RCC mix designs and the basis for equipment calibration for monitoring important data that can be referenced during analysis of shear forces acting on the RCC dam over time.展开更多
The probability, main effect factors and diffusion theory of structural superplastic diffusion bonding of W6Mo5Cr4V2/45 steel have been observed and analyzed by means of tensile test at the room temperature, scanning ...The probability, main effect factors and diffusion theory of structural superplastic diffusion bonding of W6Mo5Cr4V2/45 steel have been observed and analyzed by means of tensile test at the room temperature, scanning electron microscope and microhardness test. Results show that after fine graining treatment and short time superplastic pressing formation under the conditions of superplastic temperature and strain rate, W6Mo5Cr4V2/45 specimens can achieve solid state diffusion bonding and the property of welded area is the same as the other parts in the specimen. The diffusion path of carbon element is intergranular and of dislocation.展开更多
An innovation is conducted on a K190πK rail auto welding machine because of its poor stability in quality of welding joints. A new control system based on a programmable controller is designed to replace the old o...An innovation is conducted on a K190πK rail auto welding machine because of its poor stability in quality of welding joints. A new control system based on a programmable controller is designed to replace the old one. The new control system is of higher accuracy in controlling sequence and good ability in anti disturbance, and is convenient to operate. The comparison tests are carried out. The experimental results show that the quality of welded joints is greatly increased by the improved welding mechine.展开更多
文摘Roller Compacted Concrete (RCC) has gained favorable recognition in hydropower and water resource dam construction. With optimization in construction technology and materials used for RCC Dams, cost is no longer a major disadvantage as compared to environmental impact, that is, wildlife habitat disruption. In as much as it has become optimal for investment in hydropower dam construction, the scourge for dam failure is still eminent, which is as a result of excessive seepage compromising the integrity of the mechanical properties of the dam. The aim of the paper is to highlight successful application methods in joint bonding to avoid excessive seepage and reduce the autogenous healing to a few years of operation. In view of optimization, this paper presents a comprehensive study on the influences of interlayer joints bonding quality from RCC mix performances and how it consolidates the RCC layers to withstand the shear strength along the interface, especially on the high dams. The case study is the RCC dam at the 750 MW Kafue Gorge Lower Hydropower Station. The scope of the study reviews the joint type judged by Modified Maturity Factor (MMF) with joint surface long time exposed in regions with dry and high temperature, technical measures of layer bonding quality control under condition of long time joint surface exposure, effects of joints shear strength and impermeability of the RCC layers when under the conditions of plastic and elasticity. The subtle observations made during the dam construction phases were with respect to the optimal use of materials in relation to RCC mix designs and the basis for equipment calibration for monitoring important data that can be referenced during analysis of shear forces acting on the RCC dam over time.
文摘The probability, main effect factors and diffusion theory of structural superplastic diffusion bonding of W6Mo5Cr4V2/45 steel have been observed and analyzed by means of tensile test at the room temperature, scanning electron microscope and microhardness test. Results show that after fine graining treatment and short time superplastic pressing formation under the conditions of superplastic temperature and strain rate, W6Mo5Cr4V2/45 specimens can achieve solid state diffusion bonding and the property of welded area is the same as the other parts in the specimen. The diffusion path of carbon element is intergranular and of dislocation.
文摘An innovation is conducted on a K190πK rail auto welding machine because of its poor stability in quality of welding joints. A new control system based on a programmable controller is designed to replace the old one. The new control system is of higher accuracy in controlling sequence and good ability in anti disturbance, and is convenient to operate. The comparison tests are carried out. The experimental results show that the quality of welded joints is greatly increased by the improved welding mechine.