The surface undulating shapes of rock joints have been described qualitatively or experimental quantitatively for a long time. The non determined describing method can not fit quantitative evaluation of mechani...The surface undulating shapes of rock joints have been described qualitatively or experimental quantitatively for a long time. The non determined describing method can not fit quantitative evaluation of mechanical parameters of rock joints in engineering. In this paper, relative amplitude ( R A) is chosen as a quantitative describing index of surface measurement of 1 023 surface undulating curves which conducted by profile curve device(PCD). We discuss the nonuniformity,anisotropy and unhomogeneity of surface undulating shapes of joints. A new method that analyzes the complexity of surface undulating shapes of rock joints directional statistically in various rock joints is also put forward.展开更多
Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of...Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.展开更多
In order to quantify the characteristics of the surface of jointed rock mass,new equipment,the three-dimensional laser surface topography instrument,was used to accurately measure surface morphology of joints.Scan pic...In order to quantify the characteristics of the surface of jointed rock mass,new equipment,the three-dimensional laser surface topography instrument,was used to accurately measure surface morphology of joints.Scan pictures and parameters were obtained to describe the rock joint surface characteristics,for example,the height frequency of surface,and mean square roughness.Using the method of fractal dimension,the values of joint roughness coefficient(JRC) were calculated based on the above parameters.It could access to the joint surface rock sample morphology of the main parameters of characteristic.The maximum peak height is 2.692 mm in the test joint plane.The maximum profile height is 4.408 mm.JRC value is 6.38 by fractal dimension computing.It belongs to the smooth joint surface.The results show that it is a kind of the effective method to quantitatively evaluate the surface topography by the three-dimensional laser surface topography instrument and the fractal dimension method.According to the results,during the process of underground large-scale mining,safe measures to prevent slip failure of the joint plane by controlling surface tension and shear mechanical response were proposed.展开更多
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake...The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.展开更多
Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input...Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the south- ern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme Hs values is focus in E in the northem and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.展开更多
Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric...Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric stress amplitudes.The samples were subjected to 10,000 loading-unloading cycles with a frequency of 8 Hz.At each level of confining pressure,the applied cyclic deviatoric stress amplitude was increased incrementally until excessive deformation of the jointed rock specimen was observed.Analysis of the test results indicated that there existed a critical cyclic deviatoric stress amplitude(i.e.critical dynamic deviatoric stress)beyond which the jointed rock specimens yielded.The measured critical dynamic deviatoric stress was less than the corresponding static deviatoric stress.At cyclic deviatoric stress amplitudes less than the critical dynamic deviatoric stress,minor cumulative residual axial strains were observed,resulting in hysteretic damping.However,for cyclic deviatoric stresses beyond the critical dynamic deviatoric stress,the plastic strains increased promptly,and the resilient moduli degraded rapidly during the initial loading cycles.Cyclic triaxial test results showed that at higher confining pressures,the ultimate residual axial strain attained by the jointed rock specimen decreased,the steadystate dissipated energy density and steady-state damping ratio per load cycle decreased,while steadystate resilient moduli increased.展开更多
A new expression for contact deformation is given, and the normal contact stiff- ness between single asperities is derived according to Hooke's law. A contact model between two ellipsoidal asperities is simulated by ...A new expression for contact deformation is given, and the normal contact stiff- ness between single asperities is derived according to Hooke's law. A contact model between two ellipsoidal asperities is simulated by the FE method, the result compared with the theoretical solution. It is found that the curves of the normal contact stiffness versus the included angle in the principal curvature direction show similar trends and evolve as a cosine feature. The effects of the parameters on normal contact stiffness are found to show that normal contact stiffness increases and reaches the upper limit gradually with an increase in these parameters.展开更多
The contact stiffness of the joint surface directly affects the static and dynamic mechanical behavior,and accuracy of the machine tool.A new elastoplastic contact stiffness model is proposed by considering continuous...The contact stiffness of the joint surface directly affects the static and dynamic mechanical behavior,and accuracy of the machine tool.A new elastoplastic contact stiffness model is proposed by considering continuous and smooth contact characteristics and substrate deformation.First,the interpolation interval of cubic Hermite polynomials is improved to meet the continuous and smooth change of contact parameters during asperity deformation.Then,the micro-contact mechanism considering substrate deformation is explored by establishing an asperity-substrate system model.Furthermore,combined with statistical principles,a new contact stiffness model of the joint surface is established.Finally,the correctness of the built model is verified by comparing with experimental data and different contact models.The simulation results show that the model changes continuously and smoothly in the three deformation regions.The substrate deformation mainly affects the asperities in the elastic contact stage.The smoother is the surface,the more significant is the influence of substrate deformation.展开更多
Osteochondral lesion of the talus(OLT)is a common cause of ankle pain that often occurs in the talar dome and leads to talar cartilage and subchondral bone damage.Osteochondral autograft transplantation is a logical t...Osteochondral lesion of the talus(OLT)is a common cause of ankle pain that often occurs in the talar dome and leads to talar cartilage and subchondral bone damage.Osteochondral autograft transplantation is a logical treatment option.It is known that if the cartilage does not heal properly after injury,it degenerates,and osteoarthritis worsens.A three dimensional(3D)-printed guide plate can be used to find the curved articular surface from the donor site which optimally fits the defect in the talus.Herein,we present the case of a 28-year-old man who had an open injury from the crash of a tricycle in the right ankle at the age of 5.Radiographs revealed a large defect in the medial talar dome that affected nearly half of the talar dome.We performed the debridement of the ankle lesion.An osteochondral autograft was harvested from the medial femoral condyle(MFC)with the help of a personalised 3D-printed guide plate.This 3D-printed guide plate simulated the contour of a specific area in the talar dome,which involved the site of the defect.The autograft was then transplanted into the talus defect.The efficacy of this technique was evaluated at 2,4,and 7 months after surgery and proven to be reliable.展开更多
文摘The surface undulating shapes of rock joints have been described qualitatively or experimental quantitatively for a long time. The non determined describing method can not fit quantitative evaluation of mechanical parameters of rock joints in engineering. In this paper, relative amplitude ( R A) is chosen as a quantitative describing index of surface measurement of 1 023 surface undulating curves which conducted by profile curve device(PCD). We discuss the nonuniformity,anisotropy and unhomogeneity of surface undulating shapes of joints. A new method that analyzes the complexity of surface undulating shapes of rock joints directional statistically in various rock joints is also put forward.
文摘Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.
基金Project(2011QNZT087) supported by the Freedom Explore Program of Central South University of ChinaProject(51074178) supported by the National Natural Science Foundation of China+1 种基金Project(09JJ4025) supported by Hunan Provincial Natural Science Foundation of ChinaProject(2010QZZD001) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to quantify the characteristics of the surface of jointed rock mass,new equipment,the three-dimensional laser surface topography instrument,was used to accurately measure surface morphology of joints.Scan pictures and parameters were obtained to describe the rock joint surface characteristics,for example,the height frequency of surface,and mean square roughness.Using the method of fractal dimension,the values of joint roughness coefficient(JRC) were calculated based on the above parameters.It could access to the joint surface rock sample morphology of the main parameters of characteristic.The maximum peak height is 2.692 mm in the test joint plane.The maximum profile height is 4.408 mm.JRC value is 6.38 by fractal dimension computing.It belongs to the smooth joint surface.The results show that it is a kind of the effective method to quantitatively evaluate the surface topography by the three-dimensional laser surface topography instrument and the fractal dimension method.According to the results,during the process of underground large-scale mining,safe measures to prevent slip failure of the joint plane by controlling surface tension and shear mechanical response were proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.42377182,52079133 and 41931295).
文摘The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate.
基金supported by the National Natural Science Foundation of China (51279186)the Open Fund of the Shandong Province Key Laboratory of Ocean Engineering,Ocean University of China (201362045)
文摘Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the south- ern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme Hs values is focus in E in the northem and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.
文摘Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric stress amplitudes.The samples were subjected to 10,000 loading-unloading cycles with a frequency of 8 Hz.At each level of confining pressure,the applied cyclic deviatoric stress amplitude was increased incrementally until excessive deformation of the jointed rock specimen was observed.Analysis of the test results indicated that there existed a critical cyclic deviatoric stress amplitude(i.e.critical dynamic deviatoric stress)beyond which the jointed rock specimens yielded.The measured critical dynamic deviatoric stress was less than the corresponding static deviatoric stress.At cyclic deviatoric stress amplitudes less than the critical dynamic deviatoric stress,minor cumulative residual axial strains were observed,resulting in hysteretic damping.However,for cyclic deviatoric stresses beyond the critical dynamic deviatoric stress,the plastic strains increased promptly,and the resilient moduli degraded rapidly during the initial loading cycles.Cyclic triaxial test results showed that at higher confining pressures,the ultimate residual axial strain attained by the jointed rock specimen decreased,the steadystate dissipated energy density and steady-state damping ratio per load cycle decreased,while steadystate resilient moduli increased.
基金Project supported by the National Basic Research Program of China(973 Program)(No.2009CB724406)
文摘A new expression for contact deformation is given, and the normal contact stiff- ness between single asperities is derived according to Hooke's law. A contact model between two ellipsoidal asperities is simulated by the FE method, the result compared with the theoretical solution. It is found that the curves of the normal contact stiffness versus the included angle in the principal curvature direction show similar trends and evolve as a cosine feature. The effects of the parameters on normal contact stiffness are found to show that normal contact stiffness increases and reaches the upper limit gradually with an increase in these parameters.
基金This work was supported by the National Natural Science Foundation of China(Grant Number 51975449)the Key Research and Development Program of Shaanxi(Number 2021GY-309)。
文摘The contact stiffness of the joint surface directly affects the static and dynamic mechanical behavior,and accuracy of the machine tool.A new elastoplastic contact stiffness model is proposed by considering continuous and smooth contact characteristics and substrate deformation.First,the interpolation interval of cubic Hermite polynomials is improved to meet the continuous and smooth change of contact parameters during asperity deformation.Then,the micro-contact mechanism considering substrate deformation is explored by establishing an asperity-substrate system model.Furthermore,combined with statistical principles,a new contact stiffness model of the joint surface is established.Finally,the correctness of the built model is verified by comparing with experimental data and different contact models.The simulation results show that the model changes continuously and smoothly in the three deformation regions.The substrate deformation mainly affects the asperities in the elastic contact stage.The smoother is the surface,the more significant is the influence of substrate deformation.
基金the Clinical Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(No.JYLJ015)the Clinical Research Plan of SHDC(No.16CR3099B)+1 种基金the National Key Research and Development Program of China(No.2017YFC1103900)the Class IV Peak Subject Program of Shanghai Jiao Tong University School of Medicine(No.GXQ03)。
文摘Osteochondral lesion of the talus(OLT)is a common cause of ankle pain that often occurs in the talar dome and leads to talar cartilage and subchondral bone damage.Osteochondral autograft transplantation is a logical treatment option.It is known that if the cartilage does not heal properly after injury,it degenerates,and osteoarthritis worsens.A three dimensional(3D)-printed guide plate can be used to find the curved articular surface from the donor site which optimally fits the defect in the talus.Herein,we present the case of a 28-year-old man who had an open injury from the crash of a tricycle in the right ankle at the age of 5.Radiographs revealed a large defect in the medial talar dome that affected nearly half of the talar dome.We performed the debridement of the ankle lesion.An osteochondral autograft was harvested from the medial femoral condyle(MFC)with the help of a personalised 3D-printed guide plate.This 3D-printed guide plate simulated the contour of a specific area in the talar dome,which involved the site of the defect.The autograft was then transplanted into the talus defect.The efficacy of this technique was evaluated at 2,4,and 7 months after surgery and proven to be reliable.