Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A ...A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes.展开更多
Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(C...Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.展开更多
The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson ef...The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.展开更多
We investigate the chiral edge states-induced Josephson current–phase relation in a graphene-based Josephson junction modulated by the off-resonant circularly polarized light and the staggered sublattice potential.By...We investigate the chiral edge states-induced Josephson current–phase relation in a graphene-based Josephson junction modulated by the off-resonant circularly polarized light and the staggered sublattice potential.By solving the Bogoliubov–de Gennes equation,a φ_(0) Josephson junction is induced in the coaction of the off-resonant circularly polarized light and the staggered sublattice potential,which arises from the fact that the center of-mass wave vector of Cooper pair becomes finite and the opposite center of-mass wave vector to compensate is lacking in the nonsuperconducting region.Interestingly,when the direction of polarization of light is changed,-φ_(0) to φ_(0) transition generates,which generalizes the concept of traditional 0–πtransition.Our findings provide a purely optical way to manipulate a phase-controllable Josephson device and guidelines for future experiments to confirm the presence of graphene-based φ_(0)Josephson junction.展开更多
Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional...Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.展开更多
As a platform for holding Majorana zero models(MZMs),the two-dimensional planar topological Josephson junction that can be used as carriers for topological quantum computing faces some challenges.One is a combination ...As a platform for holding Majorana zero models(MZMs),the two-dimensional planar topological Josephson junction that can be used as carriers for topological quantum computing faces some challenges.One is a combination of mirror and time-reversal symmetries may make the system hold multiple pairs of MZMs.The other is that a soft gap dominated by a large momentum occurs in a clean system.To solve these problems,asymmetric junction can be introduced.Breaking this symmetry changes the symmetry class from class BDI to class D,and only a single pair of MZMs can be left at the boundary of the system.We numerically study four cases that create an asymmetric system and find out different superconducting pairing potential,different coupling coefficients between two-dimensional electron gases(2DEGs)and two superconducting bulks,different widths of two superconducting bulks make the gap of the system decrease at the optimal value,but make the gap at the minimum value increases.And the zigzag-shape quasi-one-dimensional junction eliminates the large momentum parallel to the junction and enhances the gap at the large momentum.However,the zigzag-shape junction cannot increase the gap at the region of multiple pairs of MZMs in a symmetric system.We show that by combining zigzag-shape junction with different coupling coefficients,the system can maintain a large gap(≈0.2△)in a wide region of the parameter space.展开更多
As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’...As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’s atomic structure based on experimental data,and the impact of the structure on junctions’properties can be investigated by combining different analysis techniques.In order to build a physical model of the atomic structure and then analyze the factors that affect its performance,this paper briefly reviews the development and evolution of the RMC algorithm.It also summarizes the modeling process and structural feature analysis of the Josephson junction in combination with different feature extraction techniques for electrical characterization devices.Additionally,the obstacles and potential directions of Josephson junction modeling,which serves as the theoretical foundation for the production of superconducting quantum devices at the atomic level,are discussed.展开更多
Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic nois...Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.展开更多
To study the nonclassical effects of the mesoscopic Josephson junction in the presence of a nonclassical microwave, the mesoscopic Josephson junction and the field were both treated quantum mechanically, and the exte...To study the nonclassical effects of the mesoscopic Josephson junction in the presence of a nonclassical microwave, the mesoscopic Josephson junction and the field were both treated quantum mechanically, and the external field approximation was used. It is shown that if the external field is in the coherent state and the state of the junction is initially prepared in the vacuum state, the state of the junction can evolve into a quantum superposition of two coherent states. The Schrdinger cat states can be produced in a mesoscopic Josephson junction.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.
基金support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No.2019319)support from the Start-up Foundation of Suzhou Institute of Nano-Tech and Nano-Bionics,CAS,Suzhou (Grant No.Y9AAD110)。
文摘A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes.
基金supported by the National Natural Science Foundation of China (Grant No.12104016)the National Key Research and Development Program of China (Grant No.2020YFF01014706)。
文摘Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1403601).
文摘The spin superconductor state is the spin-polarized triplet exciton condensate,which can be viewed as a counterpart of the charge superconductor state.As an analogy of the charge Josephson effect,the spin Josephson effect can be generated in the spin superconductor/normal metal/spin superconductor junctions.Here we study the spin supercurrent in the Josephson junctions consisting of two spin superconductors with noncollinear spin polarizations.For the Josephson junctions with out-of-plane spin polarizations,the possibleπ-state spin supercurrent appears due to the Fermi momentum-splitting Andreev-like reflections at the normal metal/spin superconductor interfaces.For the Josephson junctions with in-plane spin polarizations,the anomalous spin supercurrent appears and is driven by the misorientation angle of the in-plane polarizations.The symmetry analysis shows that the appearance of the anomalous spin Josephson current is possible when the combined symmetry of the spin rotation and the time reversal is broken.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104232,11805103,and 11804167)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20190137 and BK20180739)+2 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.020414380195 and B230201042)the Jit-b Project(Grant No.201831)the Natural Science Fund of Nanjing University of Posts and Telecommunications(Grant No.NY222163)。
文摘We investigate the chiral edge states-induced Josephson current–phase relation in a graphene-based Josephson junction modulated by the off-resonant circularly polarized light and the staggered sublattice potential.By solving the Bogoliubov–de Gennes equation,a φ_(0) Josephson junction is induced in the coaction of the off-resonant circularly polarized light and the staggered sublattice potential,which arises from the fact that the center of-mass wave vector of Cooper pair becomes finite and the opposite center of-mass wave vector to compensate is lacking in the nonsuperconducting region.Interestingly,when the direction of polarization of light is changed,-φ_(0) to φ_(0) transition generates,which generalizes the concept of traditional 0–πtransition.Our findings provide a purely optical way to manipulate a phase-controllable Josephson device and guidelines for future experiments to confirm the presence of graphene-based φ_(0)Josephson junction.
文摘Based on the Bogoliubov-de Gennes equation and the extended McMillan’s Green’s function formalism,we study theoretically the Josephson effect between two d-wave superconductors bridged by a ballistic two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting.We show that due to the interplay of Rashba spin-orbit coupling and Zeeman splitting and d-wave pairing,the current-phase relation in such a heterostructure may exhibit a series of novel features and can change significantly as some relevant parameters are tuned.In particular,anomalous Josephson current may occur at zero phase bias under various different situations if both time reversal symmetry and inversion symmetry of the system are simultaneously broken,which can be realized by tuning some relevant parameters of the system,including the relative orientations and the strengths of the Zeeman field and the spin-orbit field in the bridge region,the relative orientations of the a axes in two superconductor leads,or the relative orientations between the Zeeman field in the bridge region and the a axes in the superconductor leads.We show that both the magnitude and the direction of the anomalous Josephson current may depend sensitively on these relevant parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974271)。
文摘As a platform for holding Majorana zero models(MZMs),the two-dimensional planar topological Josephson junction that can be used as carriers for topological quantum computing faces some challenges.One is a combination of mirror and time-reversal symmetries may make the system hold multiple pairs of MZMs.The other is that a soft gap dominated by a large momentum occurs in a clean system.To solve these problems,asymmetric junction can be introduced.Breaking this symmetry changes the symmetry class from class BDI to class D,and only a single pair of MZMs can be left at the boundary of the system.We numerically study four cases that create an asymmetric system and find out different superconducting pairing potential,different coupling coefficients between two-dimensional electron gases(2DEGs)and two superconducting bulks,different widths of two superconducting bulks make the gap of the system decrease at the optimal value,but make the gap at the minimum value increases.And the zigzag-shape quasi-one-dimensional junction eliminates the large momentum parallel to the junction and enhances the gap at the large momentum.However,the zigzag-shape junction cannot increase the gap at the region of multiple pairs of MZMs in a symmetric system.We show that by combining zigzag-shape junction with different coupling coefficients,the system can maintain a large gap(≈0.2△)in a wide region of the parameter space.
基金This paper is supported by the Major Science and Technology Projects of Henan Province under Grant No.221100210400.
文摘As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’s atomic structure based on experimental data,and the impact of the structure on junctions’properties can be investigated by combining different analysis techniques.In order to build a physical model of the atomic structure and then analyze the factors that affect its performance,this paper briefly reviews the development and evolution of the RMC algorithm.It also summarizes the modeling process and structural feature analysis of the Josephson junction in combination with different feature extraction techniques for electrical characterization devices.Additionally,the obstacles and potential directions of Josephson junction modeling,which serves as the theoretical foundation for the production of superconducting quantum devices at the atomic level,are discussed.
基金the Ministry of Science and Higher Education of the Russian Federation under Grant No.FSUN-2023-0007.
文摘Some electrical parameters of the SIS-type hysteretic underdamped Josephson junction(JJ)can be measured by its current-voltage characteristics(IVCs).Currents and voltages at JJ are commensurate with the intrinsic noise level of measuring instruments.This leads to the need for multiple measurements with subsequent statistical processing.In this paper,the digital algorithms are proposed for the automatic measurement of the JJ parameters by IVC.These algorithms make it possible to implement multiple measurements and check these JJ parameters in an automatic mode with the required accuracy.The complete sufficient statistics are used to minimize the root-mean-square error of parameter measurement.A sequence of current pulses with slow rising and falling edges is used to drive JJ,and synchronous current and voltage readings at JJ are used to realize measurement algorithms.The algorithm performance is estimated through computer simulations.The significant advantage of the proposed algorithms is the independence from current source noise and intrinsic noise of current and voltage meters,as well as the simple implementation in automatic digital measuring systems.The proposed algorithms can be used to control JJ parameters during mass production of superconducting integrated circuits,which will improve the production efficiency and product quality.
文摘To study the nonclassical effects of the mesoscopic Josephson junction in the presence of a nonclassical microwave, the mesoscopic Josephson junction and the field were both treated quantum mechanically, and the external field approximation was used. It is shown that if the external field is in the coherent state and the state of the junction is initially prepared in the vacuum state, the state of the junction can evolve into a quantum superposition of two coherent states. The Schrdinger cat states can be produced in a mesoscopic Josephson junction.