Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w...Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average d...The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.展开更多
Let X=(Omega,F,F-t,X(t),theta(t),P-x) be a jump Markov process with q-pair q(x)-q(x, A). In this paper, the equilibrium principle is established and equilibrium functions, energy, capacity and related problems is inve...Let X=(Omega,F,F-t,X(t),theta(t),P-x) be a jump Markov process with q-pair q(x)-q(x, A). In this paper, the equilibrium principle is established and equilibrium functions, energy, capacity and related problems is investigated in terms of the q-pair q(x)-q(x, A).展开更多
In this paper, we consider the two-sided first exit problem for jump diffusion processes having jumps with rational Laplace transforms. We investigate the probabilistic property of conditional memorylessness, and driv...In this paper, we consider the two-sided first exit problem for jump diffusion processes having jumps with rational Laplace transforms. We investigate the probabilistic property of conditional memorylessness, and drive the joint distribution of the first exit time from an interval and the overshoot over the boundary at the exit time.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
The representation of additive functionals and local times for jump Markov processes are obtained. The results of uniformly functional moderate deviation and their applications to birth-death processes are also presen...The representation of additive functionals and local times for jump Markov processes are obtained. The results of uniformly functional moderate deviation and their applications to birth-death processes are also presented.展开更多
The hedging problem for insiders is very important in the financial market.The locally risk minimizing hedging was adopted to solve this problem.Since the market was incomplete,the minimal martingale measure was chose...The hedging problem for insiders is very important in the financial market.The locally risk minimizing hedging was adopted to solve this problem.Since the market was incomplete,the minimal martingale measure was chosen as the equivalent martingale measure.By the F-S decomposition,the expression of the locally risk minimizing strategy was presented.Finally,the local risk minimization was applied to index tracking and its relationship with tracking error variance (TEV)-minimizing strategy was obtained.展开更多
Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO(001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300K to 80K, the measured three-...Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO(001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300K to 80K, the measured three-jump hysteresis loops turn into two-jump loops. The temperature dependence of the fourfold in-plane magnetic anisotropy constant K1, domain wall pinning energy, and an additional uniaxial magnetic anisotropy constant KUare responsible for this transformation. The strengths of K1 and domain wall pinning energy increase with decreasing temperature, but KU remains unchanged. Moreover, magnetization reversal mechanisms, with either two successive or two separate 90°domain wall propagation, are introduced to explain the multi-jump magnetic switching process in epitaxial Fe/MgO(001) films at different temperatures.展开更多
A lot of forms and applications have been found in Poincar6 inequality, but the optimum constants satisfying Poincar6 inequality have not been estimated. This paper estimates the optimum constants λ0 and λ1 satisfyi...A lot of forms and applications have been found in Poincar6 inequality, but the optimum constants satisfying Poincar6 inequality have not been estimated. This paper estimates the optimum constants λ0 and λ1 satisfying Poincaré inequality by using isoperimetric constants. It is λ0≥k0^2/(2R) and λ1 ≥k1^2/(2R).展开更多
One of the important problems of stochastic process theory is to define the Laplace transforms for the distribution of semi-markov random processes. With this purpose, we will investigate the semimarkov random process...One of the important problems of stochastic process theory is to define the Laplace transforms for the distribution of semi-markov random processes. With this purpose, we will investigate the semimarkov random processes with positive tendency and negative jump in this article. The first passage of the zero level of the process will be included as a random variable. The Laplace transforms for the distribution of this random variable is defined. The parameters of the distribution will be calculated on the basis of the final results.展开更多
In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus...In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus process leaving zero ultimately (simply, the ultimately leaving-time), the surplus immediately prior to ruin, the supreme profits before ruin, the supreme profits and deficit until it leaves zero ultimately and so on. The explicit expressions for their distributions are obtained mainly by the various properties of Levy process, such as the homogeneous strong Markov property and the spatial homogeneity property etc, moveover, the many properties for Brownian motion.展开更多
In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and...In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value function is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.展开更多
Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclus...Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclusion that there are some stocks in which the return processes consistently depart from these models in theory as well as in its statistical properties. This paper gives a fundamental review of the development of a stock price model based on pure jump processes to capture the unique behavior exhibited by some stocks on the Exchange. Although pure jump processes have been examined thoroughly by other authors, there is a lack of mathematical clarity in terms of deriving the underlying stock price process. This paper provides a link between stock prices existing on a measure space to its development as a pure jump Levy process. We test the suitability of the model to the empirical evidence using numerical procedures. The simulation results show that the trajectories of the model are a better fit for the empirical data than those produced by the diffusion and jump diffusion models.展开更多
A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that gov...A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.展开更多
The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In thi...The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In this paper, we modify the classical Poisson risk model to describe the surplus process of an insurance portfolio. We consider a jump-diffusion risk process compounded by a geometric Brownian motion, and assume that the claim sizes and claim intervals are dependent. Using the properties of conditional expectation, we establish integro-differential equations for the Gerber-Shiu function and the ultimate ruin probability.展开更多
Using approximation technique, we introduce the concepts of canonical extension and symmetrio integral for jump process and obtain some results in the chaotic form.
基金funded by CONAHCYT grant(252808)to GFCONAHCYT’s“Estancias Posdoctorales por México”program(662350)to HTB。
文摘Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金the National Natural Science Foundation of China (60674027, 60574007)Doctoral Foundation of Education Ministry of China (20050446001).
文摘The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.
文摘Let X=(Omega,F,F-t,X(t),theta(t),P-x) be a jump Markov process with q-pair q(x)-q(x, A). In this paper, the equilibrium principle is established and equilibrium functions, energy, capacity and related problems is investigated in terms of the q-pair q(x)-q(x, A).
文摘In this paper, we consider the two-sided first exit problem for jump diffusion processes having jumps with rational Laplace transforms. We investigate the probabilistic property of conditional memorylessness, and drive the joint distribution of the first exit time from an interval and the overshoot over the boundary at the exit time.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金Research supported by the National Nature Science Foun- dation of China (10271091)
文摘The representation of additive functionals and local times for jump Markov processes are obtained. The results of uniformly functional moderate deviation and their applications to birth-death processes are also presented.
基金National Natural Science Foundations of China (No. 11071076,No. 11126124)
文摘The hedging problem for insiders is very important in the financial market.The locally risk minimizing hedging was adopted to solve this problem.Since the market was incomplete,the minimal martingale measure was chosen as the equivalent martingale measure.By the F-S decomposition,the expression of the locally risk minimizing strategy was presented.Finally,the local risk minimization was applied to index tracking and its relationship with tracking error variance (TEV)-minimizing strategy was obtained.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB921403,2011CB921801,and 2012CB933102)the National Natural Science Foundation of China(Grant Nos.51427801,11374350,and 11274361)
文摘Temperature dependence of magnetic switching processes with multiple jumps in Fe/MgO(001) films is investigated by magnetoresistance measurements. When the temperature decreases from 300K to 80K, the measured three-jump hysteresis loops turn into two-jump loops. The temperature dependence of the fourfold in-plane magnetic anisotropy constant K1, domain wall pinning energy, and an additional uniaxial magnetic anisotropy constant KUare responsible for this transformation. The strengths of K1 and domain wall pinning energy increase with decreasing temperature, but KU remains unchanged. Moreover, magnetization reversal mechanisms, with either two successive or two separate 90°domain wall propagation, are introduced to explain the multi-jump magnetic switching process in epitaxial Fe/MgO(001) films at different temperatures.
基金The Science and Technology Foundation of Chongqing Municipal Education Commission (No.KJ071106)
文摘A lot of forms and applications have been found in Poincar6 inequality, but the optimum constants satisfying Poincar6 inequality have not been estimated. This paper estimates the optimum constants λ0 and λ1 satisfying Poincaré inequality by using isoperimetric constants. It is λ0≥k0^2/(2R) and λ1 ≥k1^2/(2R).
文摘One of the important problems of stochastic process theory is to define the Laplace transforms for the distribution of semi-markov random processes. With this purpose, we will investigate the semimarkov random processes with positive tendency and negative jump in this article. The first passage of the zero level of the process will be included as a random variable. The Laplace transforms for the distribution of this random variable is defined. The parameters of the distribution will be calculated on the basis of the final results.
基金Supported by the National Natural Sci-ence Foundations of China (10271062 and 10471119)the Natural Science Foundation of Shandong Province(Y2004A06, Y2008A12, and ZR2009AL015)+1 种基金the Science Foundations of Shandong Provincial Education Department (J07yh05)the Science Foundations of Qufu Normal University (XJ0713, Bsqd200517)
文摘In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus process leaving zero ultimately (simply, the ultimately leaving-time), the surplus immediately prior to ruin, the supreme profits before ruin, the supreme profits and deficit until it leaves zero ultimately and so on. The explicit expressions for their distributions are obtained mainly by the various properties of Levy process, such as the homogeneous strong Markov property and the spatial homogeneity property etc, moveover, the many properties for Brownian motion.
基金Supported by the Humanity and Social Science Foundation of Ministry of Education of China(10YJC790296)Supported by the National Natural Science Foundation of China(71073020)
文摘In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value function is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.
文摘Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclusion that there are some stocks in which the return processes consistently depart from these models in theory as well as in its statistical properties. This paper gives a fundamental review of the development of a stock price model based on pure jump processes to capture the unique behavior exhibited by some stocks on the Exchange. Although pure jump processes have been examined thoroughly by other authors, there is a lack of mathematical clarity in terms of deriving the underlying stock price process. This paper provides a link between stock prices existing on a measure space to its development as a pure jump Levy process. We test the suitability of the model to the empirical evidence using numerical procedures. The simulation results show that the trajectories of the model are a better fit for the empirical data than those produced by the diffusion and jump diffusion models.
文摘A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.
文摘The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In this paper, we modify the classical Poisson risk model to describe the surplus process of an insurance portfolio. We consider a jump-diffusion risk process compounded by a geometric Brownian motion, and assume that the claim sizes and claim intervals are dependent. Using the properties of conditional expectation, we establish integro-differential equations for the Gerber-Shiu function and the ultimate ruin probability.
基金Supported in part by National Natural Science Foundation of China.
文摘Using approximation technique, we introduce the concepts of canonical extension and symmetrio integral for jump process and obtain some results in the chaotic form.