Structural models of credit risk are known to present vanishing spreads at very short maturities. This shortcoming, which is due to the diffusive behavior assumed for asset values, can be circumvented by considering d...Structural models of credit risk are known to present vanishing spreads at very short maturities. This shortcoming, which is due to the diffusive behavior assumed for asset values, can be circumvented by considering discontinuities of the jump type in their evolution over time. In this paper, we extend the pricing model for corporate bond and determine the default probability in jump-diffusion model to address this issue. To make the problem clearly, we first investigate the case that the firm value follows a geometric Brownian motion under similar assumptions to those in Black and Scholes(1973), Briys and de Varenne(1997), i.e, the default barrier is KD (t, T) and the recovery rate is (1 -w), where D (t, T) is the price of zero coupon default free bond and w is a constant (0 〈 w 〈 1). By changing the numeraire, we obtain the closed-form solution for both the price of bond and default probability. Further, we consider the case of jump-diffusion and suppose that a firm will go bankruptcy if its value Vt 〈 KD (t, T) and at the same time, the bondholder will receive (1 - w) vt/k By introducing the Green function of PDE with absorbing boundary and converting the problem to an II-type Volterra integral equation, we get the closed-form expressions in series form for bond price and corresponding default probability. Numerical results are presented to show the impact of different parameters to credit spread of bond.展开更多
In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the...In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the reset option with a single reset date and the phenomena of delta of the reset jumps existing in the reset option during the reset date are discussed. The closed-form formulae of pricing for two kinds of power options are derived in the end.展开更多
This paper intuitively examines the dynamic behavior of two highly relevant interest rates in China. The first one is the government rate, which is decided and published by the central bank and can be simulated by pur...This paper intuitively examines the dynamic behavior of two highly relevant interest rates in China. The first one is the government rate, which is decided and published by the central bank and can be simulated by pure jump process. Estimation of the jump intension is given out. And by different robustness test, it keeps stable. The jump size has met the condition to make interest rate within reasonable bounds and shown some meaning of economic cycle behavior. The second one is the market rate, which is estimated by spline approximation based on the transaction data of government bonds. Several models, including Vasicek model, Vasicek-GARCH (1,1) model, CIR model, and CIR-GARCH(1,1), are empirically tested and the best performance is done by the Vasicek-GARCH(1,1) model. Furthermore, the estimate bias problem due to the near unit root process is tested and evidenced by both traditional methods and GPH test. Impact of government rate on market rate is finally checked and analyzed.展开更多
Motivated by the lack of a suitable constructive framework for analyzing popular stochastic models of Systems Biology, we devise conditions for existence and uniqueness of solutions to certain jump stochastic differen...Motivated by the lack of a suitable constructive framework for analyzing popular stochastic models of Systems Biology, we devise conditions for existence and uniqueness of solutions to certain jump stochastic differential equations (SDEs). Working from simple examples we find reasonable and explicit assumptions on the driving coefficients for the SDE representation to make sense. By “reasonable” we mean that stronger assumptions generally do not hold for systems of practical interest. In particular, we argue against the traditional use of global Lipschitz conditions and certain common growth restrictions. By “explicit”, finally, we like to highlight the fact that the various constants occurring among our assumptions all can be determined once the model is fixed. We show how basic long time estimates and some limit results for perturbations can be derived in this setting such that these can be contrasted with the corresponding estimates from deterministic dynamics. The main complication is that the natural path-wise representation is generated by a counting measure with an intensity that depends nonlinearly on the state.展开更多
This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve be...This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve better performance,auxiliary function-based double integral inequality is combined with extended Wirtinger's inequality and Jensen inequality to deal with the double integral and the triple integral in augmented Lyapunov-Krasovskii function(ALKF) and their weak infinitesimal generator respectively, the more accurate approximation bounds with a fewer variables are derived. As a result, less conservative stability criteria are proposed in this paper. Finally,numerical examples are given to show the effectiveness and the merits of the proposed method.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(2007CB814903)
文摘Structural models of credit risk are known to present vanishing spreads at very short maturities. This shortcoming, which is due to the diffusive behavior assumed for asset values, can be circumvented by considering discontinuities of the jump type in their evolution over time. In this paper, we extend the pricing model for corporate bond and determine the default probability in jump-diffusion model to address this issue. To make the problem clearly, we first investigate the case that the firm value follows a geometric Brownian motion under similar assumptions to those in Black and Scholes(1973), Briys and de Varenne(1997), i.e, the default barrier is KD (t, T) and the recovery rate is (1 -w), where D (t, T) is the price of zero coupon default free bond and w is a constant (0 〈 w 〈 1). By changing the numeraire, we obtain the closed-form solution for both the price of bond and default probability. Further, we consider the case of jump-diffusion and suppose that a firm will go bankruptcy if its value Vt 〈 KD (t, T) and at the same time, the bondholder will receive (1 - w) vt/k By introducing the Green function of PDE with absorbing boundary and converting the problem to an II-type Volterra integral equation, we get the closed-form expressions in series form for bond price and corresponding default probability. Numerical results are presented to show the impact of different parameters to credit spread of bond.
文摘In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the reset option with a single reset date and the phenomena of delta of the reset jumps existing in the reset option during the reset date are discussed. The closed-form formulae of pricing for two kinds of power options are derived in the end.
文摘This paper intuitively examines the dynamic behavior of two highly relevant interest rates in China. The first one is the government rate, which is decided and published by the central bank and can be simulated by pure jump process. Estimation of the jump intension is given out. And by different robustness test, it keeps stable. The jump size has met the condition to make interest rate within reasonable bounds and shown some meaning of economic cycle behavior. The second one is the market rate, which is estimated by spline approximation based on the transaction data of government bonds. Several models, including Vasicek model, Vasicek-GARCH (1,1) model, CIR model, and CIR-GARCH(1,1), are empirically tested and the best performance is done by the Vasicek-GARCH(1,1) model. Furthermore, the estimate bias problem due to the near unit root process is tested and evidenced by both traditional methods and GPH test. Impact of government rate on market rate is finally checked and analyzed.
文摘Motivated by the lack of a suitable constructive framework for analyzing popular stochastic models of Systems Biology, we devise conditions for existence and uniqueness of solutions to certain jump stochastic differential equations (SDEs). Working from simple examples we find reasonable and explicit assumptions on the driving coefficients for the SDE representation to make sense. By “reasonable” we mean that stronger assumptions generally do not hold for systems of practical interest. In particular, we argue against the traditional use of global Lipschitz conditions and certain common growth restrictions. By “explicit”, finally, we like to highlight the fact that the various constants occurring among our assumptions all can be determined once the model is fixed. We show how basic long time estimates and some limit results for perturbations can be derived in this setting such that these can be contrasted with the corresponding estimates from deterministic dynamics. The main complication is that the natural path-wise representation is generated by a counting measure with an intensity that depends nonlinearly on the state.
基金supported by the National Natural Science Foundation of China(61403001,61572032)in part by the Natural Science Foundation of Anhui Province of China(1508085QF136)in part by the Natural Science Foundation of Universities of Anhui Province of China(KJ2016A058)
文摘This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve better performance,auxiliary function-based double integral inequality is combined with extended Wirtinger's inequality and Jensen inequality to deal with the double integral and the triple integral in augmented Lyapunov-Krasovskii function(ALKF) and their weak infinitesimal generator respectively, the more accurate approximation bounds with a fewer variables are derived. As a result, less conservative stability criteria are proposed in this paper. Finally,numerical examples are given to show the effectiveness and the merits of the proposed method.