This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve be...This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve better performance,auxiliary function-based double integral inequality is combined with extended Wirtinger's inequality and Jensen inequality to deal with the double integral and the triple integral in augmented Lyapunov-Krasovskii function(ALKF) and their weak infinitesimal generator respectively, the more accurate approximation bounds with a fewer variables are derived. As a result, less conservative stability criteria are proposed in this paper. Finally,numerical examples are given to show the effectiveness and the merits of the proposed method.展开更多
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e....The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.展开更多
One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay.The first contribution of this paper is to establish...One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay.The first contribution of this paper is to establish a necessary and sufficient condition on a matrix-valued polynomial inequality over a certain closed interval.The degree of such a matrix-valued polynomial can be an arbitrary finite positive integer.The second contribution of this paper is to introduce a novel LyapunovKrasovskii functional,which includes a cubic polynomial on a time-varying delay,in stability analysis of time-delay systems.Based on the novel Lyapunov-Krasovskii functional and the necessary and sufficient condition on matrix-valued polynomial inequalities,two stability criteria are derived for two cases of the time-varying delay.A well-studied numerical example is given to show that the proposed stability criteria are of less conservativeness than some existing ones.展开更多
The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average d...The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.展开更多
In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control alg...In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control algorithm, the delay-dependent stability, instead of delay-independent stability, is taken as the aim of control design. It improves the transparency of the system at the price of unnecessary stability. With this algorithm, the time-delay teleoperation systems have good transparency and stability. A simulation system is established to verify the effect of this algorithm.展开更多
This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constan...This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.展开更多
To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function ...To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].展开更多
This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stabi...This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stability conditions for Markovian jump systems are proposed by constructing a different Lyapunov-Krasovskii function. The resulting criteria have advantages over some previous ones in that they involve fewer matrix variables but have less conservatism. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper.展开更多
A robust reliability method for stability analysis and reliability-based stabilization of time-delay dynamic systems with uncertain but bounded parameters is presented by treating the uncertain parameters as interval ...A robust reliability method for stability analysis and reliability-based stabilization of time-delay dynamic systems with uncertain but bounded parameters is presented by treating the uncertain parameters as interval variables.The performance function used for robust reliability analysis is defined by a delayindependent stability criterion.The design of robust controllers is carried out by solving a reliability-based optimization problem in which the control cost satisfying design requirements is minimized.This kind of treatment makes it possible to achieve a balance between the reliability and control cost in the design of controller when uncertainties must be taken into account.By the method,a robust reliability measure of the degree of stability of a time-delay uncertain system can be provided,and the maximum robustness bounds of uncertain parameters such that the time-delay system to be stable can be obtained.All the procedures are based on the linear matrix inequality approach and therefore can be carried out conveniently.The effectiveness and feasibility of the proposed method are demonstrated with two practical examples.It is shown by numerical simulations and comparison that it is meaningful to take the robust reliability into account in the control design of uncertain systems.展开更多
In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the Interna...In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.展开更多
The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomi...The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.展开更多
This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integ...This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integral inequality to estimate the derivative of Lyapunov-Krasovskii functional(LKF) with multiple integral terms, a novel stability condition is formulated for the linear time-delay systems. Two numerical examples are employed to demonstrate the improvements of our results.展开更多
Stochastic generalized porous media equation with jump is considered. The aim is to show the moment exponential stability and the almost certain exponential stability of the stochastic equation.
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d...The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.展开更多
In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized ...In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditions are derived regarding linear matrix inequalities(LMIs)to study the global asymptotic stability of state-delay systems.Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a p H neutralizing process are provided to demonstrate the efficacy of the proposed method.展开更多
Some new results for stability of uncertain time-delay systems are derived and the stability degree is also discussed. Some previous results for stability and robust stability of time-delay systems are improved. Lastl...Some new results for stability of uncertain time-delay systems are derived and the stability degree is also discussed. Some previous results for stability and robust stability of time-delay systems are improved. Lastly, examples are included to illustrate our results.展开更多
The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal over...The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.展开更多
This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied...This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied to a flight control system. A distributed recoverable platform is implemented on the flight control system and subject to independent digital upsets. The upset processes are used to stimulate electromagnetic environments. Specifically, the paper presents the scenarios that the upset process is directly injected into the distributed flight control system, which is modeled by independent Markov upset processes and independent and identically distributed (IID) processes. A theoretical performance analysis and simulation modelling are both presented in detail for a more complete independent digital upset injection. The specific examples are proposed to verify the methodology of tracking performance analysis. The general analyses for different configurations are also proposed. Comparisons among different configurations are conducted to demonstrate the availability and the characteristics of the design.展开更多
基金supported by the National Natural Science Foundation of China(61403001,61572032)in part by the Natural Science Foundation of Anhui Province of China(1508085QF136)in part by the Natural Science Foundation of Universities of Anhui Province of China(KJ2016A058)
文摘This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve better performance,auxiliary function-based double integral inequality is combined with extended Wirtinger's inequality and Jensen inequality to deal with the double integral and the triple integral in augmented Lyapunov-Krasovskii function(ALKF) and their weak infinitesimal generator respectively, the more accurate approximation bounds with a fewer variables are derived. As a result, less conservative stability criteria are proposed in this paper. Finally,numerical examples are given to show the effectiveness and the merits of the proposed method.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2008AA042902), National Natural Science Foundation of P. R. China (60736021), and National Creative Research Groups Science Foundation of China (60721061)
基金Postdoctoral Science Foundation of China (No. 20060400980)Postdoctoral Science Foundation of Shandong Province(No. 200603015)National Science Foundation of China (No. 10671112)
文摘The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.
基金supported in part by the Australian Research Council Discovery Project(Grant No.DP160103567)。
文摘One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay.The first contribution of this paper is to establish a necessary and sufficient condition on a matrix-valued polynomial inequality over a certain closed interval.The degree of such a matrix-valued polynomial can be an arbitrary finite positive integer.The second contribution of this paper is to introduce a novel LyapunovKrasovskii functional,which includes a cubic polynomial on a time-varying delay,in stability analysis of time-delay systems.Based on the novel Lyapunov-Krasovskii functional and the necessary and sufficient condition on matrix-valued polynomial inequalities,two stability criteria are derived for two cases of the time-varying delay.A well-studied numerical example is given to show that the proposed stability criteria are of less conservativeness than some existing ones.
基金the National Natural Science Foundation of China (60674027, 60574007)Doctoral Foundation of Education Ministry of China (20050446001).
文摘The exponential stability is investigated for a class of continuous time linear systems with a finite state Markov chain form process and the impulsive jump at switching moments. The conditions, based on the average dwell time and the ratio of expectation of the total time running on all unstable subsystems to the expectation of the total time running on all stable subsystems,assure the exponential stability with a desired stability degree of the system irrespective of the impact of impulsive jump. The uniformly bounded result is realized for the case in which switched system is subjected to the impulsive effect of the excitation signal at some switching moments.
基金This work was supported by 863 Program of PRC (No.2002AA742045).
文摘In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control algorithm, the delay-dependent stability, instead of delay-independent stability, is taken as the aim of control design. It improves the transparency of the system at the price of unnecessary stability. With this algorithm, the time-delay teleoperation systems have good transparency and stability. A simulation system is established to verify the effect of this algorithm.
基金supported by the National Natural Science Foundation of China (No.60574001)Program for New Century Excellent Talents in University (No.050485)Program for Innovative Research Team of Jiangnan University
文摘This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.
基金Project(61273095)supported by the National Natural Science Foundation of ChinaProject(135225)supported by the Academy of Finland
文摘To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].
文摘This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stability conditions for Markovian jump systems are proposed by constructing a different Lyapunov-Krasovskii function. The resulting criteria have advantages over some previous ones in that they involve fewer matrix variables but have less conservatism. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper.
文摘A robust reliability method for stability analysis and reliability-based stabilization of time-delay dynamic systems with uncertain but bounded parameters is presented by treating the uncertain parameters as interval variables.The performance function used for robust reliability analysis is defined by a delayindependent stability criterion.The design of robust controllers is carried out by solving a reliability-based optimization problem in which the control cost satisfying design requirements is minimized.This kind of treatment makes it possible to achieve a balance between the reliability and control cost in the design of controller when uncertainties must be taken into account.By the method,a robust reliability measure of the degree of stability of a time-delay uncertain system can be provided,and the maximum robustness bounds of uncertain parameters such that the time-delay system to be stable can be obtained.All the procedures are based on the linear matrix inequality approach and therefore can be carried out conveniently.The effectiveness and feasibility of the proposed method are demonstrated with two practical examples.It is shown by numerical simulations and comparison that it is meaningful to take the robust reliability into account in the control design of uncertain systems.
文摘In this correspondence paper, an equivalent stability criterion with minimal number of linear matrix inequality (LMI) variables is presented for a delay-dependent stability criterion reported recently in the International Journal of Automation and Computing for a class of linear discrete-time systems with additive time delays. The reported stability criterion for the additive timedelay systems has more number of matrix variables in the LMI and, hence, demand additional computational burden. The proposed equivalent stability criterion, unlike the reported one, does not involve free-weighing matrices and encompass only the matrix variables that are associated in the Lyapunov-Krasovskii functional, making the criterion mathematically less complex and computationally more effective.
基金This project was supported by the National Science Foundation of China (60572093).
文摘The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.
基金supported by the National Natural Science Foundation of China(61473070,61433004,61627809)SAPI Fundamental Research Funds(2013ZCX01,2013ZCX14)
文摘This paper investigates the stability of time-delay systems via a multiple integral approach. Based on the refined Jensen-based inequality, a novel multiple integral inequality is proposed. Applying the multiple integral inequality to estimate the derivative of Lyapunov-Krasovskii functional(LKF) with multiple integral terms, a novel stability condition is formulated for the linear time-delay systems. Two numerical examples are employed to demonstrate the improvements of our results.
基金Project supported by the Tianyuan Foundation of National Natural Science of China(No.11126079)the China Postdoctoral Science Foundation(No.2013M530559)the Fundamental Research Funds for the Central Universities(No.CDJRC10100011)
文摘Stochastic generalized porous media equation with jump is considered. The aim is to show the moment exponential stability and the almost certain exponential stability of the stochastic equation.
基金supported by the National Natural Science Foundation of China(60874114).
文摘The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.
文摘In this paper, a novel non-monotonic Lyapunov-Krasovskii functional approach is proposed to deal with the stability analysis and stabilization problem of linear discrete time-delay systems. This technique is utilized to relax the monotonic requirement of the Lyapunov-Krasovskii theorem. In this regard, the Lyapunov-Krasovskii functional is allowed to increase in a few steps, while being forced to be overall decreasing. As a result, it relays on a larger class of Lyapunov-Krasovskii functionals to provide stability of a state-delay system. To this end, using the non-monotonic Lyapunov-Krasovskii theorem, new sufficient conditions are derived regarding linear matrix inequalities(LMIs)to study the global asymptotic stability of state-delay systems.Moreover, new stabilization conditions are also proposed for time-delay systems in this article. Both simulation and experimental results on a p H neutralizing process are provided to demonstrate the efficacy of the proposed method.
文摘Some new results for stability of uncertain time-delay systems are derived and the stability degree is also discussed. Some previous results for stability and robust stability of time-delay systems are improved. Lastly, examples are included to illustrate our results.
基金Supported by National Natural Science Foundation of China (60704007 60774038) the Key Scientific and Technological Project of Anhui Province (08010202038) the Science and Technological Fund of Anhui Province for Outstanding Youth
基金supported in part by the Scientific Research Project of Heilongjiang Province Education Bureau(12541200)
文摘The problems of stability and stabilization for the discrete Takagi-Sugeno(T-S) fuzzy time-delay system are investigated.By constructing a discrete piecewise Lyapunov-Krasovskii function(PLKF) in each maximal overlapped-rules group(MORG),a new sufficient stability condition for the open-loop discrete T-S fuzzy time-delay system is proposed and proved.Then the systematic design of the fuzzy controller is investigated via the parallel distributed compensation control scheme,and a new stabilization condition for the closed-loop discrete T-S fuzzy time-delay system is proposed.The above two sufficient conditions only require finding common matrices in each MORG.Compared with the common Lyapunov-Krasovskii function(CLKF) approach and the fuzzy Lyapunov-Krasovskii function(FLKF) approach,these proposed sufficient conditions can not only overcome the defect of finding common matrices in the whole feasible region but also largely reduce the number of linear matrix inequalities to be solved.Finally,simulation examples show that the proposed PLKF approach is effective.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61403395)the Natural Science Foundation of Tianjin,China(Grant No.13JCYBJC39000)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,Chinathe Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation of China(Grant No.104003020106)the Fund for Scholars of Civil Aviation University of China(Grant No.2012QD21x)
文摘This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied to a flight control system. A distributed recoverable platform is implemented on the flight control system and subject to independent digital upsets. The upset processes are used to stimulate electromagnetic environments. Specifically, the paper presents the scenarios that the upset process is directly injected into the distributed flight control system, which is modeled by independent Markov upset processes and independent and identically distributed (IID) processes. A theoretical performance analysis and simulation modelling are both presented in detail for a more complete independent digital upset injection. The specific examples are proposed to verify the methodology of tracking performance analysis. The general analyses for different configurations are also proposed. Comparisons among different configurations are conducted to demonstrate the availability and the characteristics of the design.