The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at th...The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ-vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES 1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed. Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage.展开更多
The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in...The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.展开更多
We demonstrate coherent transfer of an ultra-stable optical frequency at 192.8 THz over 50-km spooled fiber. Random phase noise induced by environmental disturbance through fiber is detected and suppressed by feeding ...We demonstrate coherent transfer of an ultra-stable optical frequency at 192.8 THz over 50-km spooled fiber. Random phase noise induced by environmental disturbance through fiber is detected and suppressed by feeding a correctional signal into an acousto-optic modulator. After being compensated, the fiber-induced frequency instability is 2×10-17 at 1-s averaging time and reaches 8×10-20 after 16 h. The noise floor of the compensation system could be as low as 2×10-18 at 1-s averaging time.展开更多
To increase the efficiency and reliability of the thermodynamics analysis of the spool valve, the precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke and thermal-...To increase the efficiency and reliability of the thermodynamics analysis of the spool valve, the precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke and thermal-hydraulic bond graph based on the conservation of mass and energy were introduced. Subsequently, the connection rule for the bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing the spool valve, the lumped parameter for mathematical model of the system was given. At last, the reliability of the mathematical model of the flow area and the thermal-hydraulic system for the sloping U-shape notch orifice on the spool were demonstrated by the test. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.展开更多
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not...Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.展开更多
In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonabl...In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.展开更多
The purpose of this paper is to present a design procedure for subsea rigid jumper system including strength and fatigue analysis. Special attention gives to a methodology based on DNV-RP-F105 to evaluate jumper fatig...The purpose of this paper is to present a design procedure for subsea rigid jumper system including strength and fatigue analysis. Special attention gives to a methodology based on DNV-RP-F105 to evaluate jumper fatigue damage caused by vortex induced vibration (VIV). Jumper strength analysis is to determine the jumper con-figuration which can accommodate various load conditions and all possible span lengths driven by installation tole-rances of connected subsea structures. Fatigue analysis includes two parts:thermal fatigue and VIV fatigue. This paper presents the procedure of VIV fatigue damage calculation. An example is given to illustrate above methodologies.展开更多
Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivi...Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10^-12/g and 5.38 × 10^-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters,which will minimize the influence from numerical simulation error and manufacture tolerance.展开更多
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a...High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.展开更多
An explanation of the mechanism of generation and acceleration of jets in outer space is given on the basis of experiments in the physics of electrical discharge. The presence of two arms in the spiral Galaxy gives gr...An explanation of the mechanism of generation and acceleration of jets in outer space is given on the basis of experiments in the physics of electrical discharge. The presence of two arms in the spiral Galaxy gives grounds to assume that they have excess charges of the opposite sign. At the moment when the electric field strength between the tips of the arms becomes sufficient, an electrical breakdown occurs, which is accompanied by the movement of the current-plasma leader in the jumper between the tips of the arms. In the head part of the leader there is a flat electric domain of a strong field, which, during its inception, emits intense transverse electromagnetic waves in a direction perpendicular to the direction of the leader’s motion and to the plane of the accretion disk. The electric domain periodically appears and collapses due to the entry of neutral particles. Transverse electromagnetic waves capture charged particles from the discharge region and accelerate them in the direction of wave propagation. The crossed fields of an electromagnetic wave perform the functions of a multistage accelerator. The acceleration of the particles of the plasma produced in the discharge to relativistic energy values in the region of narrow vortex jets occurs under the action of forces caused by the components of the electromagnetic wave fields and the pressure gradient. The charged particles of a vortex jet acquire a significant rotational moment under the action of the Lorentz force. Explanations of the generation of microwave, bremsstrahlung and optical radiation from the region of the jumper between the arms of the Galaxy in the absence of electrical breakdown are also given.展开更多
文摘The finite element method (FEM) and particle image velocimetry (PIV) technique are utilized to get the flow field along the inlet passage, the chamber, the metering port and the outlet passage of spool valve at three different valve openings. For FEM numerical simulation, the stream function ψ-vorticity ω forms of continuity and Navier-Stokes equations are employed and FEM is applied to discrete the equations. Homemade simulation codes are executed to compute the values of stream function and vorticity at each node in the flow domain, then according to the correlation between stream function and velocity components, the velocity vectors of the whole field are calculated. For PIV experiment, pulse Nd: YAG laser is exploited to generate laser beam, cylindrical and spherical lenses are combined each other to produce 1.0 mm thickness laser sheet to illuminate the object plane, Polystyrene spherical particle with diameter of 30-50 μm is seeded in the fluid as a tracing particles, Kodak ES 1.0 CCD camera is employed to capture the images of interested, the images are processed with fast Fourier transform (FFT) cross-correlation algorithm and the processing results is displayed. Both results of numerical simulation and PIV experimental show that there are three main areas in the spool valve where vortex is formed. Numerical results also indicate that the valve opening have some effects on the flow structure of the valve. The investigation is helpful for qualitatively analyzing the energy loss, noise generating, steady state flow forces and even designing the geometry structure and flow passage.
基金financially supported by the National Natural Science Foundation of China(Grant No.51221961)
文摘The study focuses on the flexible jumper issue of Subsurface Tension Leg Production (STLP) system concept, which is considered as a competing alternative system to support well completion devices and rigid risers in ultra-deep water for offshore petroleum production. The paper presents analytical and numerical approaches for the optimum design and global analysis of the flexible jumper. Criteria using catenary concept are developed to define the critical length for optimum design. Based on the criteria, detailed hydrodynamic analyses including quasi-static analysis, modal analysis, and dynamic analysis are performed. Modal analysis with respect to the quasi-static analysis shows that the existence of resonant modes requires special consideration. The results of dynamic analysis confirm the effectiveness of the de-coupled effect from the jumper on STLP system. The approaches developed in the study also have wide application prospect in reference to the optimum design and analysis of any Hybrid Riser (HR) concept.
基金supported by the National Natural Science Foundation of China(Grant Nos.11127405,11334002,and 11374102)the National Basic Research Program of China(Grant No.2012CB821302)
文摘We demonstrate coherent transfer of an ultra-stable optical frequency at 192.8 THz over 50-km spooled fiber. Random phase noise induced by environmental disturbance through fiber is detected and suppressed by feeding a correctional signal into an acousto-optic modulator. After being compensated, the fiber-induced frequency instability is 2×10-17 at 1-s averaging time and reaches 8×10-20 after 16 h. The noise floor of the compensation system could be as low as 2×10-18 at 1-s averaging time.
基金Project(51175518)supported by the National Natural Science Foundation of China
文摘To increase the efficiency and reliability of the thermodynamics analysis of the spool valve, the precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke and thermal-hydraulic bond graph based on the conservation of mass and energy were introduced. Subsequently, the connection rule for the bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing the spool valve, the lumped parameter for mathematical model of the system was given. At last, the reliability of the mathematical model of the flow area and the thermal-hydraulic system for the sloping U-shape notch orifice on the spool were demonstrated by the test. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005441,51890885)open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201906)+1 种基金Zhejiang Province Natural Science Foundation of China(Grant No.LQ21E050017)China Postdoctoral Science Foundation(Grant Nos.2021M692777,2021T140594).
文摘In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.
文摘The purpose of this paper is to present a design procedure for subsea rigid jumper system including strength and fatigue analysis. Special attention gives to a methodology based on DNV-RP-F105 to evaluate jumper fatigue damage caused by vortex induced vibration (VIV). Jumper strength analysis is to determine the jumper con-figuration which can accommodate various load conditions and all possible span lengths driven by installation tole-rances of connected subsea structures. Fatigue analysis includes two parts:thermal fatigue and VIV fatigue. This paper presents the procedure of VIV fatigue damage calculation. An example is given to illustrate above methodologies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11034008 and 11274324)the Key Research Program of the Chinese Academy of Sciences(Grant No.KJZD-EW-W02)
文摘Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10^-12/g and 5.38 × 10^-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters,which will minimize the influence from numerical simulation error and manufacture tolerance.
文摘High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.
文摘An explanation of the mechanism of generation and acceleration of jets in outer space is given on the basis of experiments in the physics of electrical discharge. The presence of two arms in the spiral Galaxy gives grounds to assume that they have excess charges of the opposite sign. At the moment when the electric field strength between the tips of the arms becomes sufficient, an electrical breakdown occurs, which is accompanied by the movement of the current-plasma leader in the jumper between the tips of the arms. In the head part of the leader there is a flat electric domain of a strong field, which, during its inception, emits intense transverse electromagnetic waves in a direction perpendicular to the direction of the leader’s motion and to the plane of the accretion disk. The electric domain periodically appears and collapses due to the entry of neutral particles. Transverse electromagnetic waves capture charged particles from the discharge region and accelerate them in the direction of wave propagation. The crossed fields of an electromagnetic wave perform the functions of a multistage accelerator. The acceleration of the particles of the plasma produced in the discharge to relativistic energy values in the region of narrow vortex jets occurs under the action of forces caused by the components of the electromagnetic wave fields and the pressure gradient. The charged particles of a vortex jet acquire a significant rotational moment under the action of the Lorentz force. Explanations of the generation of microwave, bremsstrahlung and optical radiation from the region of the jumper between the arms of the Galaxy in the absence of electrical breakdown are also given.