The current-voltage characteristics of 4H-SiC junction barrier Schottky (JBS) diodes terminated by an offset field plate have been measured in the temperature range of 25-300℃. An experimental barrier height value ...The current-voltage characteristics of 4H-SiC junction barrier Schottky (JBS) diodes terminated by an offset field plate have been measured in the temperature range of 25-300℃. An experimental barrier height value of about 0.5 eV is obtained for the Ti/4H-SiC JBS diodes at room temperature. A decrease in the experimental barrier height and an increase in the ideality factor with decreasing temperature are shown. Reverse recovery testing also shows the temperature dependence of the peak recovery current density and the reverse recovery time. Finally, a discussion of reducing the reverse recovery time is presented.展开更多
This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and rev...This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and reverse characteristics have been done, and by comparison with each other, it shows that junction barrier Schottky diode has a lower reverse current density than that of the Schottky barrier diode and a higher forward drop than that of the PiN diode. High-temperature annealing is presented in this paper as well to figure out an optimised processing. The barrier height of 0.79 eV is formed with Ti in this work, the forward drop for the Schottky diode is 2.1 V, with an ideality factor of 3.2, and junction barrier Schottky diode with blocking voltage higher than 400 V was achieved by using field guard ring termination.展开更多
A vertical junction barrier Schottky diode with a high-K/low-K compound dielectric structure is proposed and optimized to achieve a high breakdown voltage(BV).There is a discontinuity of the electric field at the inte...A vertical junction barrier Schottky diode with a high-K/low-K compound dielectric structure is proposed and optimized to achieve a high breakdown voltage(BV).There is a discontinuity of the electric field at the interface of high-K and low-K layers due to the different dielectric constants of high-K and low-K dielectric layers.A new electric field peak is introduced in the n-type drift region of junction barrier Schottky diode(JBS),so the distribution of electric field in JBS becomes more uniform.At the same time,the effect of electric-power line concentration at the p-n junction interface is suppressed due to the effects of the high-K dielectric layer and an enhancement of breakdown voltage can be achieved.Numerical simulations demonstrate that GaN JBS with a specific on-resistance(R_(on,sp)) of 2.07 mΩ·cm^(2) and a BV of 4171 V which is 167% higher than the breakdown voltage of the common structure,resulting in a high figure-of-merit(FOM) of 8.6 GW/cm^(2),and a low turn-on voltage of 0.6 V.展开更多
4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state re...4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm^2 with a total active area of 2.46× 10 ^-3 cm^2. Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250 ℃ in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9× 10^-5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61006060)the 13115 Innovation Engineering of Shaanxi, China (Grant No. 2008ZDKG-30)the Key Laboratory Fund of Ministry of Education, China (Grant No. JY0100112501)
文摘The current-voltage characteristics of 4H-SiC junction barrier Schottky (JBS) diodes terminated by an offset field plate have been measured in the temperature range of 25-300℃. An experimental barrier height value of about 0.5 eV is obtained for the Ti/4H-SiC JBS diodes at room temperature. A decrease in the experimental barrier height and an increase in the ideality factor with decreasing temperature are shown. Reverse recovery testing also shows the temperature dependence of the peak recovery current density and the reverse recovery time. Finally, a discussion of reducing the reverse recovery time is presented.
基金supported by the 13115 Innovation Engineering of Shanxi (Grant No.2008ZDKG-30)
文摘This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and reverse characteristics have been done, and by comparison with each other, it shows that junction barrier Schottky diode has a lower reverse current density than that of the Schottky barrier diode and a higher forward drop than that of the PiN diode. High-temperature annealing is presented in this paper as well to figure out an optimised processing. The barrier height of 0.79 eV is formed with Ti in this work, the forward drop for the Schottky diode is 2.1 V, with an ideality factor of 3.2, and junction barrier Schottky diode with blocking voltage higher than 400 V was achieved by using field guard ring termination.
基金Project supported by the National Natural Science Foundation of China (Grant No.61376078)the Natural Science Foundation of Sichuan Province,China (Grant No.2022NSFSC0515)。
文摘A vertical junction barrier Schottky diode with a high-K/low-K compound dielectric structure is proposed and optimized to achieve a high breakdown voltage(BV).There is a discontinuity of the electric field at the interface of high-K and low-K layers due to the different dielectric constants of high-K and low-K dielectric layers.A new electric field peak is introduced in the n-type drift region of junction barrier Schottky diode(JBS),so the distribution of electric field in JBS becomes more uniform.At the same time,the effect of electric-power line concentration at the p-n junction interface is suppressed due to the effects of the high-K dielectric layer and an enhancement of breakdown voltage can be achieved.Numerical simulations demonstrate that GaN JBS with a specific on-resistance(R_(on,sp)) of 2.07 mΩ·cm^(2) and a BV of 4171 V which is 167% higher than the breakdown voltage of the common structure,resulting in a high figure-of-merit(FOM) of 8.6 GW/cm^(2),and a low turn-on voltage of 0.6 V.
基金supported by the National Natural Science Foundation of China (Grant No. 51102225)the Natural Science Foundation of Beijing City, China (Grant No. 4132076)the Youth Innovation Promotion Association, Chinese Academy of Sciences
文摘4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm^2 with a total active area of 2.46× 10 ^-3 cm^2. Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250 ℃ in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9× 10^-5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure.