期刊文献+
共找到358篇文章
< 1 2 18 >
每页显示 20 50 100
使用R树进行k-NN搜索 被引量:2
1
作者 来琳涵 刘志镜 闫立伟 《计算机工程与设计》 CSCD 2002年第9期77-80,共4页
在地理信息系统中经常要做k-NN搜索,进行这些查询用到的算法与位置和范围查询的算法不同,需要专门进行研究。介绍了一种分支界限遍历R树算法,并将该算法概括为k-NN算法。文中讨论了两种方法,对R树进行结点内MBR的排序以及剪枝过程,以减... 在地理信息系统中经常要做k-NN搜索,进行这些查询用到的算法与位置和范围查询的算法不同,需要专门进行研究。介绍了一种分支界限遍历R树算法,并将该算法概括为k-NN算法。文中讨论了两种方法,对R树进行结点内MBR的排序以及剪枝过程,以减少搜索空间中需访问结点的数量,有效地进行k-NN搜索。 展开更多
关键词 R树 k-nn搜索 分支界限算法 剪枝 数据结构 地理信息系统
下载PDF
一种融合乌鸦搜索算法的K-means聚类算法
2
作者 高海宾 《新乡学院学报》 2024年第3期19-25,共7页
传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全... 传统的K-均值聚类算法(K-means)对初始聚类中心的选择敏感,容易陷入局部最优解,并且需要预先设定聚类数量K,这在实际操作中往往难以实现。为了解决这些问题,提出了一种融合乌鸦搜索算法的K-means聚类算法。该算法利用乌鸦搜索算法的全局搜索能力,自动确定最佳的聚类数目K,从而提高聚类的质量和效率。通过在Seeds数据集进行实验计算卡林斯基-哈拉巴斯(Calinski-Harabasz)指数等评价指标,发现该算法聚类效果明显优于传统的K-means算法。 展开更多
关键词 k-MEANS算法 乌鸦搜索算法 聚类 Calinski-Harabasz指数
下载PDF
基于相似日聚类和PCC-VMD-SSA-KELM模型的短期光伏功率预测 被引量:3
3
作者 李争 张杰 +3 位作者 徐若思 罗晓瑞 梅春晓 孙鹤旭 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期460-468,共9页
由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输... 由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输入;K-均值算法进行相似日聚类,将历史数据聚类为晴天、多云和雨天;其次,VMD对原始信号进行分解,充分提取集合中的输入因素信息,提高数据质量;SSA优化KELM模型的核函数参数和正则化系数解决其参数选择敏感问题;最后,将不同序列预测值叠加得到最终预测结果。仿真结果表明,所提相似日聚类下PCC-VMD-SSA-KELM模型具有较小的预测误差。 展开更多
关键词 光伏发电 功率预测 变分模态分解 k-均值 麻雀算法 核函数极限学习机
下载PDF
支持K-近邻搜索的区块链泛用型数据隐私保护方法
4
作者 王胜 潘正高 董全德 《辽宁大学学报(自然科学版)》 CAS 2024年第2期147-157,共11页
随着区块链泛用型数据应用场景的不断扩大,其涉及的数据隐私越来越多,数据隐私泄露可能导致个人信用受损,带来财产损失甚至身份盗用等.合理高效地进行用户身份信息及数据隐私保护是确保区块链泛用型数据安全的关键问题.为此,本文提出了... 随着区块链泛用型数据应用场景的不断扩大,其涉及的数据隐私越来越多,数据隐私泄露可能导致个人信用受损,带来财产损失甚至身份盗用等.合理高效地进行用户身份信息及数据隐私保护是确保区块链泛用型数据安全的关键问题.为此,本文提出了支持K-近邻搜索的区块链泛用型数据隐私保护方法,采集区块链泛用型数据,利用k-prototypes算法,聚类区块链泛用型数据,并控制分类属性和数值属性.在此基础上,本文支持K-近邻搜索,建立区块链泛用型数据系统模型,确定区块链泛用型数据敏感区域,实现区块链泛用型数据隐私保护.实验结果表明,本文所提方法具有较好的区块链泛用型数据隐私保护效果,能够有效提高区块链泛用型数据隐私保护安全性,缩短区块链泛用型数据隐私保护时间. 展开更多
关键词 k-近邻搜索 区块链 泛用型数据 k-prototypes算法 数据隐私保护
下载PDF
基于自适应布谷鸟优化特征选择的K-means聚类 被引量:3
5
作者 孙林 刘梦含 《计算机应用》 CSCD 北大核心 2024年第3期831-841,共11页
K-means聚类算法随机确定初始聚类数目,而且原始数据集中含有大量的冗余特征会导致聚类时精度降低,而布谷鸟搜索(CS)算法存在收敛速度慢和局部搜索能力弱等问题,为此提出一种基于自适应布谷鸟优化特征选择的K-means聚类算法(DCFSK)。首... K-means聚类算法随机确定初始聚类数目,而且原始数据集中含有大量的冗余特征会导致聚类时精度降低,而布谷鸟搜索(CS)算法存在收敛速度慢和局部搜索能力弱等问题,为此提出一种基于自适应布谷鸟优化特征选择的K-means聚类算法(DCFSK)。首先,为提升CS算法的搜索速度和精度,在莱维飞行阶段,设计了自适应步长因子;为调节CS算法全局搜索和局部搜索之间的平衡、加快CS算法的收敛,动态调整发现概率,进而提出改进的动态CS算法(IDCS),在IDCS的基础上构建了结合动态CS的特征选择算法(DCFS)。其次,为提升传统欧氏距离的计算精确度,设计同时考虑样本和特征对距离计算贡献程度的加权欧氏距离;为了确定最佳聚类数目的选取方法,依据改进的加权欧氏距离构造了加权簇内距离和簇间距离。最后,为克服传统K-means聚类目标函数仅考虑簇内的距离而未考虑簇间距离的缺陷,提出基于中位数的轮廓系数的目标函数,进而设计了DCFSK。实验结果表明,在10个基准测试函数上,IDCS的各项指标取得了较优的结果;相较于K-means、DBSCAN(Density-Based Spatial Clustering of Applications with Noise)等算法,在6个合成数据集与6个UCI数据集上,DCFSK的聚类效果最佳。 展开更多
关键词 布谷鸟搜索算法 k-MEANS聚类 欧氏距离 特征选择 轮廓系数
下载PDF
基于K-means聚类的多种群麻雀搜索算法 被引量:1
6
作者 闫少强 刘卫东 +2 位作者 杨萍 吴丰轩 阎哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期508-518,共11页
为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优... 为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优的概率;采用K-means聚类划分子种群,增加子种群间的差异性,同时使子种群内个体在小范围内专注搜索,提升前期搜索效率;借助加权重心交流策略改善种群间交流的质量,减少自身种群的干扰,同时消减因某一子种群陷入局部最优而导致所有子种群陷入局部最优的风险;引入动态反向学习到警戒者中,增强其反捕食行为,改善因子种群数量增加而带来的收敛速度变慢和收敛精度不足的缺陷。经测试函数仿真实验表明:较SSA等算法,KSSA具有更优的寻优性能。 展开更多
关键词 麻雀搜索算法 优化算法 多种群 k-MEANS聚类 种群交流
下载PDF
融合异常检测与区域分割的高效K-means聚类算法
7
作者 尹宏伟 杭雨晴 胡文军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期80-88,共9页
传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,... 传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,以提高聚类性能。其次,利用近邻簇搜索技术对各类簇进行自适应的区域分割,以减少冗余计算,提高算法执行效率。最后,为验证所提方法的有效性,在多个合成数据集和真实数据集上分别进行测试。实验结果表明:所提算法聚类性能和执行效率优于其他算法;在添加10%异常样本的Wine数据集上准确度可达0.911。 展开更多
关键词 聚类 k-MEANS 异常检测 区域分割 近邻簇搜索 自适应
下载PDF
改进秃鹰搜索和K均值混合迭代的点云简化算法
8
作者 牛宏侠 李富丽 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第2期172-183,共12页
针对激光雷达的固有特性和复杂环境易造成点云噪声和冗余点云,以及传统点云简化算法忽略了点云固有特征等问题,提出了一种基于改进秃鹰搜索和K均值聚类(KMC)混合迭代的点云简化算法(IBESSA)。首先,通过秃鹰搜索(BES)算法迭代阶段的竞争... 针对激光雷达的固有特性和复杂环境易造成点云噪声和冗余点云,以及传统点云简化算法忽略了点云固有特征等问题,提出了一种基于改进秃鹰搜索和K均值聚类(KMC)混合迭代的点云简化算法(IBESSA)。首先,通过秃鹰搜索(BES)算法迭代阶段的竞争融合(CFBES),提高其收敛速度和优化精度;其次,通过CFBES和KMC算法的混合迭代,实现了点云数据的聚类;然后,在k近邻(k-NN)实现点云簇密度估计的基础上,结合香农熵实现点云信息量化;最后,删除信息量化值小于阈值的聚类簇,完成点云数据简化。使用UCI国际标准数据集和斯坦福点云数据集分别对CFBES-KMC算法的聚类效果及点云的简化效果进行验证,结果表明:与改进飞蛾扑火的K均值交叉迭代、K-means++、模糊C均值聚类算法的聚类效果相比,CFBES-KMC算法的聚类准确率分别提高了1.02%、12.31%、14.72%;在斯坦福点云数据集上,IBESSA算法在有效滤除冗余点云的基础上保留了原本点云的细节和形状特征,不失为一种高效的点云简化算法。 展开更多
关键词 秃鹰搜索算法 竞争融合 k均值聚类混合迭代 香农熵 点云简化
下载PDF
基于邻域k-核的社区模型与查询算法
9
作者 张琦 程苗苗 +1 位作者 李荣华 王国仁 《软件学报》 EI CSCD 北大核心 2024年第3期1051-1073,共23页
现实生活中的网络通常存在社区结构,社区查询是图数据挖掘的基本任务.现有研究工作提出了多种模型来识别网络中的社区,如基于k-核的模型和基于k-truss的模型.然而,这些模型通常只限制社区内节点或边的邻居数量,忽略了邻居之间的关系,即... 现实生活中的网络通常存在社区结构,社区查询是图数据挖掘的基本任务.现有研究工作提出了多种模型来识别网络中的社区,如基于k-核的模型和基于k-truss的模型.然而,这些模型通常只限制社区内节点或边的邻居数量,忽略了邻居之间的关系,即节点的邻域结构,从而导致社区内节点的局部稠密性较低.针对这一问题,将节点的邻域结构信息融入k-核稠密子图中,提出一种基于邻域连通k-核的社区模型,并定义了社区的稠密度.基于这一新模型,研究了最稠密单社区查询问题,即返回包含查询节点集且具有最高稠密度的社区.在现实生活图数据中,一组查询节点可能会分布在多个不相交的社区中.为此,进一步研究了基于稠密度阈值的多社区查询问题,即返回包含查询节点集的多个社区,且每个社区的稠密度不低于用户指定的阈值.针对最稠密单社区查询和基于稠密度阈值的多社区查询问题,首先定义了边稠密度的概念,并提出了基于边稠密度的基线算法.为了提高查询效率,设计了索引树和改进索引树结构,能够支持在多项式时间内输出结果.通过与基线算法在多组数据集上的对比,验证了基于邻域连通k-核的社区模型的有效性和所提出查询算法的效率. 展开更多
关键词 社区搜索 邻域结构 k-核子图
下载PDF
基于k-d树的ICP算法的管道缺陷最深点自动识别研究
10
作者 刘婉莹 王峰 +2 位作者 唐健 王军 李想 《自动化技术与应用》 2024年第8期162-166,共5页
金属管道外表面存在凹坑、腐蚀缺陷等情况,为了准确判断管道的剩余服役寿命,提出一种基于k-d树ICP算法的油气管道缺陷最深点自动识别方法。扫描获取带有缺陷的管道点云数据,提取缺陷处至少1/3管道环向区域点云数据,建立标准圆柱件模型... 金属管道外表面存在凹坑、腐蚀缺陷等情况,为了准确判断管道的剩余服役寿命,提出一种基于k-d树ICP算法的油气管道缺陷最深点自动识别方法。扫描获取带有缺陷的管道点云数据,提取缺陷处至少1/3管道环向区域点云数据,建立标准圆柱件模型获取点云数据。利用ICP算法对两组点云数据进行配准,基于k-d树算法关联所有无序点云,从而加速搜索点云邻域,快速精确地识别出缺陷最深点。将该算法在天然气长输管段进行验证,以第三方专业检测机构的检测缺陷最深点数据为基准,通过计算对比发现,自动识别方法的误差率仅为0.54%,较之传统人工测量方法,测量误差率降低了3.22%,有效提高了管道外表面缺陷深度测量的准确度。 展开更多
关键词 k-d树邻近搜索法 ICP算法 管道缺陷 目标检测 图像识别
下载PDF
基于投票加权GS-KNN的离心风机故障诊断
11
作者 曾学文 陈高超 +2 位作者 付名江 邵峰 伍仁杰 《节能》 2024年第1期47-50,共4页
风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率。k近邻(KNN)对非平稳数据样本有良好的分类能力。为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障... 风机作为火力发电的重要辅机,对其进行及时高效的故障诊断,可有效减少停机损失,提高火力发电效率。k近邻(KNN)对非平稳数据样本有良好的分类能力。为了改进传统KNN算法存在的缺陷,构建投票加权网格搜索-k近邻算法(投票加权GS-KNN)故障诊断模型,利用网格搜索完成k值的选取,基于前k个近邻构建与距离值呈负相关的权值投票公式,依据投票得分情况进行故障诊断。使用投票加权GS-KNN模型对离心风机常见的9种运行状态进行故障诊断,拟合k值与准确率的关系,诊断准确率可达到100%。 展开更多
关键词 故障诊断 火力发电 网格搜索 k近邻算法 投票加权
下载PDF
XML数据流上Top-K关键字查询处理 被引量:8
12
作者 黎玲利 王宏志 +1 位作者 高宏 李建中 《软件学报》 EI CSCD 北大核心 2012年第6期1561-1577,共17页
利用关键字可以在模式未知的情况下对XML数据进行查询.在当前的XML数据流上的关键字查询处理中,打分函数往往不能都满足各种用户不同的需求.提出了一种基于skyline的XML数据流上的Top-K关键字查询.对于这种查询,不需要考虑影响结果与查... 利用关键字可以在模式未知的情况下对XML数据进行查询.在当前的XML数据流上的关键字查询处理中,打分函数往往不能都满足各种用户不同的需求.提出了一种基于skyline的XML数据流上的Top-K关键字查询.对于这种查询,不需要考虑影响结果与查询相关性的复杂因素,只需利用skyline挑选与查询最相关的结果.提出了两种XML数据流上的有效的基于skyline的Top-K关键查询处理算法,包括对单查询和多查询的处理算法.通过扩展实验对两种算法的有效性和可扩展性进行了验证.经过实验验证,所提出的查询处理算法的效率几乎不受关键字个数、查询结果数量、查询数量等参数的影响,运行时间和文档大小大致呈线性关系. 展开更多
关键词 XML 数据流 关键字查询 TOP-k SkYLINE
下载PDF
k-Median近似计算复杂度与局部搜索近似算法分析 被引量:8
13
作者 潘锐 朱大铭 +1 位作者 马绍汉 肖进杰 《软件学报》 EI CSCD 北大核心 2005年第3期392-399,共8页
k-Median 问题的近似算法研究一直是计算机科学工作者关注的焦点,现有研究结果大多是关于欧式空间和 Metric 空间的,一般距离空间 k-Median 的结果多年来一直未见.考虑一般距离空间 k-Median 问题,设 dmax/dmin表示 k-Median 实例中与... k-Median 问题的近似算法研究一直是计算机科学工作者关注的焦点,现有研究结果大多是关于欧式空间和 Metric 空间的,一般距离空间 k-Median 的结果多年来一直未见.考虑一般距离空间 k-Median 问题,设 dmax/dmin表示 k-Median 实例中与客户点邻接的最长边长比最短边长的最大者.首先证明 dmax/dmin≤ω+ε的 k-Median 问题不存在近似度小于1+ ω ?1 (loglog n) e 的多项式时间近似算法,除非 NP ? DTIME(nO ) ,由此推出 Metric k-Median 问题不可近似到 1+ 2 (log log n) e,除非 NP ? DTIME(nO ) .然后给出 k-Median 问题的一个局部搜索算法,分析表明,若有 dmax/dmin≤ω,则算法的近似度为 1+ ω2 .该结果亦适用于 Metric k-Median,ω≤5 时,局部搜索算法求解 Metric k-Median 的 ?1近似度为 3,好于现有结果 3+ 2 .通过计算机实验,进一步研究了 k-Median 局部搜索求解算法的实际计算效果和该 p算法的改进方法. 展开更多
关键词 κ中间点 算法 局部搜索 近似度 设备 客户
下载PDF
一种基于近邻搜索的快速k-近邻分类算法 被引量:16
14
作者 王壮 胡卫东 +1 位作者 郁文贤 庄钊文 《系统工程与电子技术》 EI CSCD 北大核心 2002年第4期100-102,共3页
针对传统快速k 近邻分类算法的缺陷 ,提出了一种基于近邻搜索的快速k 近邻分类算法———超球搜索法。该方法通过对特征空间的预组织 ,使分类在以待分样本为中心的超球内进行 ,有效地缩小了搜索范围。实验结果表明 ,在相同识别率和k值... 针对传统快速k 近邻分类算法的缺陷 ,提出了一种基于近邻搜索的快速k 近邻分类算法———超球搜索法。该方法通过对特征空间的预组织 ,使分类在以待分样本为中心的超球内进行 ,有效地缩小了搜索范围。实验结果表明 ,在相同识别率和k值的情况下 ,超球搜索法的识别速度优于基本k 近邻法和传统快速k 近邻算法———及时终止法 。 展开更多
关键词 近邻搜索 快速κ-近邻分类算法 超球搜索法
下载PDF
基于K均值聚类的快速分形编码方法 被引量:8
15
作者 陈作平 叶正麟 +1 位作者 郑红婵 赵红星 《中国图象图形学报》 CSCD 北大核心 2007年第4期586-591,共6页
针对目前分形图像压缩存在的编码时间过长问题,提出了使用K均值聚类对编码过程进行加速的方法,其中聚类向量采用图像块的正规化特征向量以保证聚类的精度,并通过用部分失真搜索来完成传统K均值聚类中最耗时的最近邻搜索过程以提高聚类... 针对目前分形图像压缩存在的编码时间过长问题,提出了使用K均值聚类对编码过程进行加速的方法,其中聚类向量采用图像块的正规化特征向量以保证聚类的精度,并通过用部分失真搜索来完成传统K均值聚类中最耗时的最近邻搜索过程以提高聚类速度。进一步,通过结合均值图像建库、去平坦块等技巧,得到了一种快速、可调的分形编码方法。实验结果表明,相对于全局搜索,所提方法大幅地提高了编码速度和压缩比,而解码质量只略有下降。 展开更多
关键词 k均值聚类 部分失真搜索 最近邻搜索 分形图像压缩
下载PDF
动态的K-均值聚类算法在图像检索中的应用 被引量:12
16
作者 张白妮 骆嘉伟 汤德佑 《计算机工程与设计》 CSCD 2004年第10期1843-1846,共4页
聚类分析技术已经广泛应用于基于内容的图像信息挖掘领域,该技术提高了图像检索的速度和质量。K-均值算法和自适应算法是两个典型的聚类分析算法,但K-均值算法严重依赖于经验参数和阙值的设定;自适应算法得到的聚类个数太多,相应的就是... 聚类分析技术已经广泛应用于基于内容的图像信息挖掘领域,该技术提高了图像检索的速度和质量。K-均值算法和自适应算法是两个典型的聚类分析算法,但K-均值算法严重依赖于经验参数和阙值的设定;自适应算法得到的聚类个数太多,相应的就是类内的图像个数过少,效率不是很高。从选取初始聚类点是否具有确定性、迭代次数是否过多和聚类个数是否适当等方面考虑,提出了一种新的聚类算法,即动态的K-均值法。模拟实验的结果表明,该算法具有较好的准确性和效率,使检索的质量和速度都得到了很大的提高。 展开更多
关键词 k-均值聚类 图像检索 k-均值算法 基于内容 聚类算法 自适应算法 图像信息 个数 速度 技术
下载PDF
基于自适应布谷鸟搜索算法的K-means聚类算法及其应用 被引量:22
17
作者 杨辉华 王克 +2 位作者 李灵巧 魏文 何胜韬 《计算机应用》 CSCD 北大核心 2016年第8期2066-2070,共5页
针对原始K-means聚类算法受初始聚类中心影响过大以及容易陷入局部最优的不足,提出一种基于改进布谷鸟搜索(CS)的K-means聚类算法(ACS-K-means)。其中,自适应CS(ACS)算法在标准CS算法的基础上引入步长自适应调整,以提高搜索精度和收敛... 针对原始K-means聚类算法受初始聚类中心影响过大以及容易陷入局部最优的不足,提出一种基于改进布谷鸟搜索(CS)的K-means聚类算法(ACS-K-means)。其中,自适应CS(ACS)算法在标准CS算法的基础上引入步长自适应调整,以提高搜索精度和收敛速度。在UCI标准数据集上,ACS-K-means算法可得到比K-means、基于遗传算法的K-means(GA-K-means)、基于布谷鸟搜索的K-means(CS-K-means)和基于粒子群优化的K-means(PSO-K-means)算法更优的聚类质量和更高的收敛速度。将ACS-K-means聚类算法应用到南宁市青秀区"城管通"系统的城管案件热图的开发中,在地图上对案件地理坐标进行聚类并显示,应用结果表明,聚类效果良好,算法收敛速度快。 展开更多
关键词 数据挖掘 k-MEANS聚类 布谷鸟搜索算法 数字城管 热图
下载PDF
一种基于广度优先搜索的K-means初始化算法 被引量:7
18
作者 张忠平 王爱杰 陈丽萍 《计算机工程与应用》 CSCD 北大核心 2008年第27期159-161,共3页
K-means算法是在现实应用中非常广泛的聚类算法,K-means算法对初始中心的选择非常敏感,对已存在的有代表性的初始算法进行了研究,提出了一种基于广度优先搜索的K-means初始化算法。该算法综合考虑了密度与距离因素,选择初始点。分析表... K-means算法是在现实应用中非常广泛的聚类算法,K-means算法对初始中心的选择非常敏感,对已存在的有代表性的初始算法进行了研究,提出了一种基于广度优先搜索的K-means初始化算法。该算法综合考虑了密度与距离因素,选择初始点。分析表明该算法选择的初始点非常接近期望的中心点。 展开更多
关键词 k-MEANS算法 广度优先搜索 密度估计 初始化
下载PDF
BiRch:一种处理k步可达性查询的双向搜索算法 被引量:12
19
作者 周军锋 陈伟 +1 位作者 费春苹 陈子阳 《通信学报》 EI CSCD 北大核心 2015年第8期50-60,共11页
针对现有方法低效或索引规模庞大的问题,提出一种双向搜索算法Bi Rch。当判断顶点u是否满足k步可达顶点v时,首先比较u的出度和v的入度,优先处理度小的顶点。其优点体现在使用较小的索引,同时避免由于u的出度过大所带来的效率下降问题;... 针对现有方法低效或索引规模庞大的问题,提出一种双向搜索算法Bi Rch。当判断顶点u是否满足k步可达顶点v时,首先比较u的出度和v的入度,优先处理度小的顶点。其优点体现在使用较小的索引,同时避免由于u的出度过大所带来的效率下降问题;提出基于双向广度层数和双向拓扑层数的剪枝策略来辅助过滤,减少需要访问的顶点数量。基于19个真实数据集进行测试,实验结果从索引构建时间、索引大小、查询响应时间、处理顶点数量以及扩展性方面验证了所提方法相对于现有方法的高效性。 展开更多
关键词 k步可达性查询 双向搜索 广度层数 拓扑层数
下载PDF
正则表达式分组的1/(1-1/k)-近似算法 被引量:12
20
作者 柳厅文 孙永 +2 位作者 卜东波 郭莉 方滨兴 《软件学报》 EI CSCD 北大核心 2012年第9期2261-2272,共12页
对正则表达式集合进行分组是解决DFA状态膨胀问题的一种重要方法.已有的分组算法大都是启发式的或蛮力的,分组效果很差.分析了DFA状态膨胀的原因,总结了某些正则表达式间的冲突状况.证明了当冲突非负和冲突独立时,正则表达式集合的最优... 对正则表达式集合进行分组是解决DFA状态膨胀问题的一种重要方法.已有的分组算法大都是启发式的或蛮力的,分组效果很差.分析了DFA状态膨胀的原因,总结了某些正则表达式间的冲突状况.证明了当冲突非负和冲突独立时,正则表达式集合的最优k分组问题可归结为最大k割问题,从而说明该问题是NP-Hard的.基于局部搜索的思想,提出了一种分组算法GRELS来解决分组问题,并证明对最大k割问题,该算法的近似比是1/(1-1/k).与已有的分组算法相比,当分组数目相同时,GRELS算法分组结果的状态总数最少,并且集合发生变化时所需的更新时间最短. 展开更多
关键词 正则表达式 深度包检测 分组算法 局部搜索 1/(1-1/k)近似
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部