在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于...在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于三方的定位隐私保护算法,能有效提升对LSP指纹信息隐私的保护强度并降低计算开销。服务器和用户分别完成对指纹信息和定位请求的加密,而第三方则基于加密指纹库和加密定位请求,在隐私状态下完成对用户的位置估计。所提算法把各参考点的位置信息随机嵌入指纹,可避免恶意用户获取各参考点的具体位置;进一步利用布隆滤波器在隐藏接入点信息的情况下,第三方可完成参考点的在线匹配,实现对用户隐私状态下的粗定位,可与定位算法结合降低计算开销。在公共数据集和实验室数据集中,对两种算法的安全、开销和定位性能进行了全面的评估。与同类加密算法比较,在不降低定位精度的情况下,进一步增强了对数据隐私的保护。展开更多
针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜...针对三维激光点云线性K最近邻(K-nearest neighbor, KNN)搜索耗时长的问题,提出了一种利用多处理器片上系统(multi-processor system on chip, MPSoC)现场可编程门阵列(field-programmable gate array,FPGA)实现三维激光点云KNN快速搜索的方法。首先给出了三维激光点云KNN算法的MPSoC FPGA实现框架;然后详细阐述了每个模块的设计思路及实现过程;最后利用MZU15A开发板和天眸16线旋转机械激光雷达搭建了测试平台,完成了三维激光点云KNN算法MPSoC FPGA加速的测试验证。实验结果表明:基于MPSoC FPGA实现的三维激光点云KNN算法能在保证邻近点搜索精度的情况下,减少邻近点搜索耗时。展开更多
针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN...针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。展开更多
在车联网场景中,现有基于位置服务的隐私保护方案存在不支持多种类型K近邻兴趣点的并行查询、难以同时保护车辆用户和位置服务提供商(Location-Based Service Provider,LBSP)两方隐私、无法抵抗恶意攻击等问题。为了解决上述问题,提出...在车联网场景中,现有基于位置服务的隐私保护方案存在不支持多种类型K近邻兴趣点的并行查询、难以同时保护车辆用户和位置服务提供商(Location-Based Service Provider,LBSP)两方隐私、无法抵抗恶意攻击等问题。为了解决上述问题,提出了一种保护两方隐私的多类型的路网K近邻查询方案MTKNN-MPP。将改进的k-out-of-n不经意传输协议应用于K近邻查询方案中,实现了在保护车辆用户的查询内容隐私和LBSP的兴趣点信息隐私的同时,一次查询多种类型K近邻兴趣点。通过增设车载单元缓存机制,降低了计算代价和通信开销。安全性分析表明,MTKNN-MPP方案能够有效地保护车辆用户的位置隐私、查询内容隐私以及LBSP的兴趣点信息隐私,可以保证车辆的匿名性,能够抵抗合谋攻击、重放攻击、推断攻击、中间人攻击等恶意攻击。性能评估表明,与现有典型的K近邻查询方案相比,MTKNN-MPP方案具有更高的安全性,且在单一类型K近邻查询和多种类型K近邻查询中,查询延迟分别降低了43.23%~93.70%,81.07%~93.93%。展开更多
文摘在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于三方的定位隐私保护算法,能有效提升对LSP指纹信息隐私的保护强度并降低计算开销。服务器和用户分别完成对指纹信息和定位请求的加密,而第三方则基于加密指纹库和加密定位请求,在隐私状态下完成对用户的位置估计。所提算法把各参考点的位置信息随机嵌入指纹,可避免恶意用户获取各参考点的具体位置;进一步利用布隆滤波器在隐藏接入点信息的情况下,第三方可完成参考点的在线匹配,实现对用户隐私状态下的粗定位,可与定位算法结合降低计算开销。在公共数据集和实验室数据集中,对两种算法的安全、开销和定位性能进行了全面的评估。与同类加密算法比较,在不降低定位精度的情况下,进一步增强了对数据隐私的保护。
文摘针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。
文摘在车联网场景中,现有基于位置服务的隐私保护方案存在不支持多种类型K近邻兴趣点的并行查询、难以同时保护车辆用户和位置服务提供商(Location-Based Service Provider,LBSP)两方隐私、无法抵抗恶意攻击等问题。为了解决上述问题,提出了一种保护两方隐私的多类型的路网K近邻查询方案MTKNN-MPP。将改进的k-out-of-n不经意传输协议应用于K近邻查询方案中,实现了在保护车辆用户的查询内容隐私和LBSP的兴趣点信息隐私的同时,一次查询多种类型K近邻兴趣点。通过增设车载单元缓存机制,降低了计算代价和通信开销。安全性分析表明,MTKNN-MPP方案能够有效地保护车辆用户的位置隐私、查询内容隐私以及LBSP的兴趣点信息隐私,可以保证车辆的匿名性,能够抵抗合谋攻击、重放攻击、推断攻击、中间人攻击等恶意攻击。性能评估表明,与现有典型的K近邻查询方案相比,MTKNN-MPP方案具有更高的安全性,且在单一类型K近邻查询和多种类型K近邻查询中,查询延迟分别降低了43.23%~93.70%,81.07%~93.93%。
文摘动态路网k近邻(kNN)查询是许多基于位置的服务(LBS)中的一个重要问题。针对该问题,提出一种面向动态路网的移动对象分布式kNN查询算法DkNN(Distributed kNN)。首先,将整个路网划分为部署于集群中不同节点中的多个子图;其次,通过并行地搜索查询范围所涉及的子图得到精确的kNN结果;最后,优化查询的搜索过程,引入查询范围剪枝策略和查询终止策略。在4个道路网络数据集上与3种基线算法进行了充分对比和验证。实验结果显示,与TEN~*-Index(Tree dEcomposition based kNN~*Index)算法相比,DkNN算法的查询时间减少了56.8%,路网更新时间降低了3个数量级。DkNN算法可以快速响应动态路网中的kNN查询请求,且在处理路网更新时具有较低的更新成本。