期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bending the Foundation Beam on Elastic Base by Two Reaction Coefficient of Winkler’s Subgrade
1
作者 Mirko Balabusic Boris Folic Slobodan Coric 《Open Journal of Civil Engineering》 2019年第2期123-134,共12页
A new method for analysis of counter beams is presented in the paper. The analysis has taken into account their stiffness EI, Winkler’s space with modulus of subgrade reaction k and equality deformities of the founda... A new method for analysis of counter beams is presented in the paper. The analysis has taken into account their stiffness EI, Winkler’s space with modulus of subgrade reaction k and equality deformities of the foundation beam with the ground. The solution is found by using the numerical analysis of the Winkler’s model, with variation of different moduli of the subgrade reaction k2 outside the force zone r, while under the force P exists the modulus of the subgrade reaction k, up to the definition of minimum bending moments. The exponential function k2(r), as the geometric position of the minimum moments is approximately assumed. From the potential energy conditions of the reciprocity of displacement and reaction, the width of the zone r and the modulus of the subgrade reaction k2 are explicitly determined, introducing in the calculation initial and calculation soil displacement wsi successively. At the end of the paper, it presented numerical example in which the influence of k and k2 values on bending moments of the counter beam is analyzed. The essential idea of this paper is to decrease the quantity of the reinforcement in the foundations, beams, i.e. to obtain a cost-efficient foundation construction. 展开更多
关键词 Foundation Beam Winkler’s Model coefficient of Subgrade Reaction Modulus k and k2 Zone r under the Force P Soil Displacement wsi
下载PDF
CPT-Based estimation of undrained shear strength of fine-grained soils in the Huanghe River Delta
2
作者 Zhongnian Yang Xuesen Liu +4 位作者 Lei Guo Yuxue Cui Xiuting Su Chao Jia Xianzhang Ling 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第5期136-146,共11页
The Huanghe River(Yellow River)Delta has a wide distribution of fine-grained soils.Fluvial alluviation,erosion,and wave loads affect the shoal area,resulting complex physical and mechanical properties to sensitive fin... The Huanghe River(Yellow River)Delta has a wide distribution of fine-grained soils.Fluvial alluviation,erosion,and wave loads affect the shoal area,resulting complex physical and mechanical properties to sensitive finegrained soil located at the river-sea boundary.The cone penetration test(CPT)is a convenient and effective in situ testing method which can accurately identify various soil parameters.Studies on undrained shear strength only roughly determine the fine content(FC)without making the FC effect clear.We studied four stations formed in different the Huanghe River Delta periods.We conducted in situ CPT and corresponding laboratory tests,examined the fine content influence on undrained shear strength(S_(u)),and determined the cone coefficient(N_(k)).The conclusions are as follows.(1)The fine content in the area exceeded 90%,and the silt content was high,accounting for more than 70%of all fine particle compositions.(2)The undrained shear strength gradually increased with depth with a maximum of approximately 250 kPa.When the silt content was lower than 60%–70%,the undrained shear strength decreased.(3)The silt and clay content influenced undrained shear strength,and the fitted f_(s)h/q_(t) function model was established,which could be applied to strata with a high fine content.The cone coefficients were between 20 and 25,and the overconsolidated soil layer had a greater cone coefficient. 展开更多
关键词 Huanghe River(Yellow River)Delta fine content(FC) cone penetration test(CPT) undrained shear strength(S_(u)) cone coefficient(N_(k))
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部