针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN...针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。展开更多
尽管音视频编码标准(Audio and Video Coding Standdard,AVS)的编码性能可以与H.264相媲美,但是H.264的应用范围更加广泛,因此视频由AVS标准转码成H.264标准具有很大的应用前景。目前,主流的转码方法是将AVS的分块模式与H.264的分块模...尽管音视频编码标准(Audio and Video Coding Standdard,AVS)的编码性能可以与H.264相媲美,但是H.264的应用范围更加广泛,因此视频由AVS标准转码成H.264标准具有很大的应用前景。目前,主流的转码方法是将AVS的分块模式与H.264的分块模式映射的方式降低转码复杂度,但是技术之间的差异导致这两种标准之间的分块模式并不是一一映射的关系,因此会导致编码效率大幅度降低。提出一种基于改进KNN(K最邻近节点)算法的AVS到H.264/AVC快速转码方法。充分利用了AVS码流中的各种信息,通过改进的KNN算法建立了中间信息和H.264分块模式之间的映射模型。根据AVS中运动矢量信息的差异自适应确定H.264可能的分块模式,实验结果表明上述问题得到有效解决,该算法在保证H.264编码效率的前提下大幅降低了转码复杂度。展开更多
文摘针对少数类合成过采样技术(Synthetic Minority Oversampling Technique,SMOTE)及其改进算法在不平衡数据分类问题中分类效果不佳,提出了基于K最邻近算法(K-NearestNeighbor,KNN)和自适应的过采样方法(Oversampling Method Based on KNN and Adaptive,KAO)。首先,利用KNN去除噪声样本;其次,根据少数类样本K近邻样本中多数类样本数,自适应给少数类样本分配过采样权重;最后,利用新的插值方式生成新样本平衡数据集。在KEEL公开的数据集上进行实验,将提出的KAO算法与SMOTE及其改进算法进行对比,在F1值和g-mean上都有所提升。
文摘尽管音视频编码标准(Audio and Video Coding Standdard,AVS)的编码性能可以与H.264相媲美,但是H.264的应用范围更加广泛,因此视频由AVS标准转码成H.264标准具有很大的应用前景。目前,主流的转码方法是将AVS的分块模式与H.264的分块模式映射的方式降低转码复杂度,但是技术之间的差异导致这两种标准之间的分块模式并不是一一映射的关系,因此会导致编码效率大幅度降低。提出一种基于改进KNN(K最邻近节点)算法的AVS到H.264/AVC快速转码方法。充分利用了AVS码流中的各种信息,通过改进的KNN算法建立了中间信息和H.264分块模式之间的映射模型。根据AVS中运动矢量信息的差异自适应确定H.264可能的分块模式,实验结果表明上述问题得到有效解决,该算法在保证H.264编码效率的前提下大幅降低了转码复杂度。